Exploring the Space of Coding Matrix Classifiers for Hierarchical Multiclass Text Categorization

Janez Brank
Introduction

• We’ll be dealing with (single-label) multi-class classification problems
 – Each instance is assigned to one (out of k) classes

• One way to handle a multi-class classification problem is to transform it into several binary (i.e. 2-class) problems
 – For each new binary problem, we have to define what is the positive and what is the negative class
 • We define the positive class as the union of one or more classes from the original problem
 • Likewise for the negative class
 • Some of the original classes might remain unused in this particular binary problem
 – We train an ensemble of binary classifiers, one for each of these new problems
 – Combine their predictions through some sort of voting to get a prediction for the original multi-class problem
Coding Matrices

• The relationship between the k classes of the original multi-class problem and the m new binary problems can be concisely described by a $k \times m$ coding matrix
 – One row for each original class
 – One column for each new binary problem
 – Entries are +1, -1, 0, meaning that the original class is used as positive / negative / unused in that particular binary problem

• Typical approaches for defining multi-class problems:
 – One vs. others: k problems, the i’th problem uses class i as positive and other classes as negative
 – One vs. one: $k(k + 1)/2$ problems, one for each pair of classes (i, j), using i as positive, j as negative, others unused
 – Exhaustive – one column for each partition of the original k classes into positive and negative
 – Error-correcting output codes

• Coding matrices are a generalization of all these
 – The space of all possible coding matrices is exponentially large in k and m
 – And gives rise to a corresponding space of classifiers for the original problem
 – We’re interested in knowing more about this space of classifiers, about their performance and its relationship to the properties of the coding matrices
Exploring the Space of Coding Matrices

- We’ll take a small multi-class problem
 - 7 classes, arranged into a 3-level hierarchy
 - This imposes an additional constraint, if a class is positive/negative, its descendants (subclasses) must also be positive/negative
 - Thus there are not 3^7 ways to fill up a column of the matrix, but fewer
 - Additionally, a column should contain at least one +1 and at least one -1
 - This leaves us with 36 possible states of a column
 - If we don’t want to have multiple identical columns in the matrix, there are only $(36 \choose m) = 36!/(m! (36 - m)!)$ possible matrices of m columns
 - For small m, or m close to 36, we can examine all possible matrices; for intermediate m this is intractable so we examined a random sample of 10^6 matrices for each m
 - We evaluate the classification performance of each matrix by the *average Jaccard score* of its predictions
 - Since the classes are in a hierarchy, not all misclassifications are equally wrong
 - So this measure gives a higher score to predictions where the predicted class was close to the correct one in the hierarchy

<table>
<thead>
<tr>
<th>m</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\begin{pmatrix}36 \ m \end{pmatrix})$</td>
<td>36</td>
<td>630</td>
<td>7140</td>
<td>58905</td>
<td>376992</td>
<td>1947792</td>
</tr>
</tbody>
</table>
Performance as a function of m

- What is the average / median / best performance over all m-column matrices, as a function of m?

Avg Jaccard score +/- std. Dev.
Distribution of matrix scores

• Suppose we choose a m-column matrix randomly and observe its performance score
 – This score can be thought of as a random variable
 – What is its distribution (depending on m)?
Distribution of matrix scores

- Suppose we choose a m-column matrix randomly and observe its performance score
 - This score can be thought of as a random variable
 - What is its distribution (depending on m)?

![Graphs showing distribution curve for different values of m]
Fitting a beta distribution

• The shape of these empirical distributions can be roughly modelled by a beta distribution
 – We estimate its parameters α_m and β_m using the method of moments
 – The fit is better for higher values of m
Fitting a beta distribution

- The chart on the right shows α_m and β_m as a function of m
 - We can see ranges $[3, 7]$ and $[10, 30]$ where both parameters are roughly exponential in m
Matrix score vs. row/column separation

- It is considered desirable that the rows of the matrix aren’t too similar to each other, and likewise the columns
 - Similar rows \rightarrow expected predictions for classes corresponding to those rows are very similar and will be easily confused
 - Similar columns \rightarrow resulting in similar binary classifiers, making mistakes at the same time, making decoding harder
 - Row (column) separation = average Hamming distance over all pairs of rows (columns)
 - What is the relation between the row (column) separation and the performance score of the matrix?
Matrix score vs. row/column separation

For $m = 4$, the graphs show a similar pattern where the column separation increases with increasing row/column separation, but the rate of increase is not consistent across all data points.

For $m = 7$, the graphs also exhibit a similar trend, with the column separation showing a more pronounced increase as the row/column separation increases.

The graphs are plotted against a linear scale for both axes, indicating a direct relationship between the variables.
Binary classifier performance vs. Ensemble performance

- The matrix defines an ensemble of binary classifiers
 - Is the ensemble as a whole better if the individual binary classifiers are better?
 - We computed the F_1 and area under ROC measures for each individual binary classifier (relative to its own binary classification problem)
 - Is the average of this score (over all classifiers in the ensemble) correlated with the score of the entire ensemble?
 - Not really: $R = 0.015$

$$R = 0.25$$
Conclusions

• The best matrices are found at $m = 7$ or 8 columns
• At $m = 4$ we can still find almost equally good matrices, but they are much more rare
 – Ideally we want ensembles that perform well and have few classifiers
 – This result shows it might be worth looking for them, as they do exist
• At higher values of m, the best matrices aren’t that good but good matrices are much easier to find
 – The more classifiers we can afford, the more we can afford to just pick a random matrix and use it
• The distribution of matrix scores is approximately like a beta distribution
 – With parameters α_m, β_m that are approximately exponential in m over wide ranges of m
• Row and column separation are indeed useful properties
 – Matrices with high row/column separation have good performance
 – But the matrices with the best performance are not the ones that maximize row/column separation
• The quality of individual binary classifiers in the ensemble is not correlated with the performance of the matrix as a whole
• Future work: test on more datasets, larger number of original classes (k), investigate other matrix properties (besides row/column separation)