Online Learning for CAT applications

Nicolò Cesa-Bianchi Gabriele Reverberi

Università degli Studi di Milano

SMART
Statistical Multilingual Analysis for Retrieval and Translation
What is SMART about N. Cesa-Bianchi and G. Reverberi (UNIMI)

Online Learning for CAT
Online learning in SMT

Interactive Machine Translation

- Learning/optimization techniques are used to tune the parameters of SMT systems
- Online learning adjusts parameters incrementally [Lian et al., 2006; Arun and Koehn, 2007; Tillman and Zhang, 2008]
- Especially useful when the system interacts with the user
The purpose of this report is to establish the scenarios which will be evaluated in the three case studies within the SMART project and to detail the requirements of the case studies towards the technical work packages (both in terms of required functionality and integration related issues).

A translation memory consists of text segments in a source language and their translations into one or more target languages. These segments can be blocks, paragraphs, sentences, or phrases. A translator first supplies a source text (that is, a text to be translated) to the translation memory.

The program will then analyze the text, trying to find segment pairs in its translation memory where the text in the new source segment matches the text in the source segment in a previously.

100% match from Translation Memory:

Source: The purpose of this report is to establish the scenarios which will be evaluated in the three case studies within the SMART project and to detail the requirements of the case studies towards the technical work packages (both in terms of required functionality and integration related issues).

Target: Prevažni spomin je sestavljen iz delov besedila iz izvornega jezika in njihovih prevodov v enega ali več ciljnih jezikov.

SDL Trados Translator’s Workbench - project - English (United Kingdom) -> Slovenian

The purpose of this report is to establish the scenarios which will be evaluated in the three case studies within the SMART project and to detail the requirements of the case studies towards the technical work packages (both in terms of required functionality and integration related issues).

Prevažni spomin je sestavljen iz delov besedila iz izvornega jezika in njihovih prevodov v enega ali več ciljnih jezikov.
CAT meets online learning

1. USER
2. SOURCE SENTENCE
3. ONLINE LEARNER
4. CANDIDATE TRANSLATION
5. TRANSLATION MEMORY
6. REFERENCE TRANSLATION
7. SMT SYSTEM

N. Cesa-Bianchi and G. Reverberi (UNIMI)
Adaptive decoding

[Liang, Bouchard-Côté, Klein, and Taskar, 2006]
Experimental setup (based on Portage SMT system)

Feature set for online weights

A new feature is created for each phrasetable entry
Experimental setup (based on Portage SMT system)

Feature set for online weights

A new feature is created for each phrasetable entry

Phase 1 – offline mode

- Building of phrasetable on a training corpus
- Tuning of loglinear weights on a development corpus

→ This gives the baseline system
Experimental setup (based on Portage SMT system)

Feature set for online weights

A new feature is created for each phrasetable entry

Phase 1 – offline mode

- Building of phrasetable on a training corpus
- Tuning of loglinear weights on a development corpus

→ This gives the baseline system

Phase 2 – online mode

Online weights are adapted during CAT process
Adaptive decoding — basic definitions

- \(f(x_t, y) \) is the vector of \textit{phrasetable feature values} when considering \(y \) as candidate translation for the source sentence \(x_t \).
- The vector \(w \) contains the decoder \textit{online weights}.
- The decoder builds a \(N \)-best list \(Y_t \) of candidate translations \(y \) by ranking them according to \textit{margin}:
 \[
 w^T f(x_t, y)
 \]
Adaptive decoding — basic definitions

- $f(x_t, y)$ is the vector of **phrasetable feature values** when considering y as candidate translation for the source sentence x_t

- The vector \mathbf{w} contains the decoder **online weights**

- The decoder builds a N-best list Y_t of candidate translations y by ranking them according to margin

$$\mathbf{w}^\top f(x_t, y)$$

- The **1-best** translation is

$$\hat{y}_t = \arg\max_{y \in Y_t} \mathbf{w}^\top f(x_t, y)$$

- The **pseudo-target** translation is

$$y^*_t = \arg\max_{y \in Y_t} \text{BLEU}(y_t, y)$$
Adaptive decoding — basic algorithmic framework

Recall:

Decoder ranks translations y according to $\mathbf{w}^\top f(x_t, y)$

- **Margin difference** for weight \mathbf{w} when y is chosen instead of y^*
 \[
 \text{MARGIN}_t(y^*, y) = \mathbf{w}^\top (f(x_t, y^*) - f(x_t, y))
 \]

- **Linear constraints** the learner tries to enforce at each step t
 \[
 \text{MARGIN}_t(y^*, y) \geq \text{BLEU}(y_t, y^*) - \text{BLEU}(y_t, y) \quad \forall y \in Y_t
 \]

- Constraints are approximately enforced by projecting current \mathbf{w} onto (some of the) hyperplanes defined by constraints
Cost-sensitive margin condition

\[MARGIN(y, y_1) \]

\[f(x, y) \]

\[f(x, y_2) \]

\[f(x, y_3) \]

BEST TRANSL.

GOOD TRANSL.

BAD TRANSL.

WORST TRANSL.
Update of parameters

Recall:

\(y \) = reference translation

\(y^* \) = pseudo-target translation (highest BLEU in N-best)

\(\hat{y} \) = guessed translation (1-best)

\(w \) = current value of online weights

Enforce margin difference between pseudo-target \(y^* \) and 1-best \(\hat{y} \)

\[
\min_{w', \xi} \|w - w'\|^2 + C \xi
\]

such that \(\text{MARGIN}(y^*, \hat{y}) \geq (\text{BLEU}(y, y^*) - \text{BLEU}(y, \hat{y})) - \xi \)

Passive-aggressive update [Crammer et al., 2006]

\[
w \leftarrow w + \eta_t (\text{BLEU}(y_t, y^*_t) - \text{BLEU}(y_t, \hat{y}_t))
\]
Theoretical guarantees

For any sequence \((x_1, y_1), (x_2, y_2), \ldots\) of source/reference pairs

- If there exists choice \(u\) for the parameters that satisfies all constraints at each step, then
 \[
 \sum_t \text{BLEU}(y_t, \hat{y}_t) \geq \sum_t \text{BLEU}(y_t, y^*_t) - \|u\|^2
 \]

- If no such \(u\) exists, then \(\sum_t \text{BLEU}(y_t, \hat{y}_t)\) is at least
 \[
 \sum_t \text{BLEU}(y_t, y^*_t) - \inf_u \left(1 + \frac{1}{C}\right) \left(\|u\|^2 + C \sum_t H_t(u)\right)
 \]

- \(C\) is the aggressiveness parameter associated with the constraints
- \(H_t(u)\) measures by how much the margin of \(u\) fails the worst constraint at time \(t\)
Learning algorithms and their analysis do not require BLEU

For robustness reasons, we train and test the system using BLEUMIX, an average of different sentence-level measures (1 BLEUMIX ≈ 0.65 BLEU)
Performance measure

- Learning algorithms and their analysis do not require BLEU.
- For robustness reasons, we train and test the system using BLEUMIX, an average of different sentence-level measures ($1 \text{ BLEUMIX} \approx 0.65 \text{ BLEU}$).

Cumulative BLEUMIX difference

The cumulative difference in sentence-level BLEUMIX points between online system translations \hat{y}_t and Portage baseline translations y'_t with respect to the common reference translation y_t:

$$\sum_{t=1}^{T} \left(\text{BLEUMIX}(y_t, \hat{y}_t) - \text{BLEUMIX}(y_t, y'_t) \right)$$
Experimental setup

- **Corpus:** English → Spanish section of Europarl
- **Training set:** 165,000 sentences
- **Dev set:** (used to tune Portage) 6,000 sentences
- **Test set:** (used for online learning)
 Five adjacent nonoverlapping blocks of 1,000 sentences each
Online learner attempts to improve on tuned Portage performance by a *single run* over 1,000 sentences → less than 0.6% of Portage training set!

Learner does so by simultaneously tuning $1,7M$ parameters associated with the phrasetable entries → about 1,700 parameters per observed sentence!

We get an improvement of about 0.4 **BLEUMIX** points per observed sentence
Weight adaptation
Dynamic growth of phrasetable

Problem: on-the-fly alignment of new segments
Dynamic growth of phrasable table

Problem: on-the-fly alignment of new segments

Oracolar PT

- Fake alignment by building an oracolar PT on train + test corpora
- After translating each new sentence, the relevant segments are moved from the oracolar PT to the working PT
- The weights associated with new segments are incrementally learned
Weight adaptation + PT adaptation
Nonparametric randomized test

- We estimate the probability p that the performance difference increases when each translation in turn is obtained from a random system (adaptive or baseline).
- This is a p-value for the null hypothesis that baseline and adaptive have the same performance.

<table>
<thead>
<tr>
<th>p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 0.28 0.33 0.18 0.45</td>
</tr>
<tr>
<td>0.01 0.40 0.20 0.13 0.41</td>
</tr>
</tbody>
</table>
Weight adaptation — 5 runs
Weight adaptation + PT adaptation — 5 runs
Open issues

- More stable learning curves
- On-the-fly alignment to replace oracular PTT
- TM’s crippling effect