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Maximising Longerm Reward is Hard

A Marshmallow experiment

A Delayed gratification and
self control

A Longitudinal study
showed relation with SAT
scores and drug use

A Walter Mischel 1968,
1998

A Video



Oh_ The Temptation on Vimeo.mp4

ExplorationExploitation Trad€Off

A Given an unknown
environment the agent faces
a dilemma

I Exploitcurrent knowledge and
optimise shortterm reward or

I Explorethe environment to
discover opportunities for a
better policy
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A Too little exploration may result in ,,
poor local policy optima.
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A Too much exploration may result in
random, undirected behaviour.
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A Find sweet spot!
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Tabular GQLearning




Results

A Game state features
A Separation (5 binned ranges)
A Last action (6 categories)
A Mode (ground, air, knocked)
A Proximity to obstacle

A Available Actions
A 19 aggressive (kick, punch)
A 10 defensive (block, lunge)
A 8 neutral (run)

A Q-Function Representation
A One layer neural netgnh)

Reinforcement Learne
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Lesson 1

Simple e-greedy exploration is hard to beat!
(or shall | say kick?)

(See also Vermorel and Mohri, 2005)
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Reinforcement Learning for Car
Racing: AMPXo0chenderfer2005)

. Collect Experience

[
.Learn transition X X "
dynamicDand rewards , x
R (counting) Sl X
.Revise value functiod j
and policy™ (prioritised £
sweep) < X

. Revise stateaction
abstraction

.Return to 1 and collect
more experience




