Scaling Up Multi-Agent Planning -
A Best-Response Approach

Anders Jonsson, Universitat Pompeu Fabra
Michael Rovatsos, University of Edinburgh
Motivation

- Planning with multiple agents is hard
 - Joint action space is exponential in the number of agents
 - Agents may be self-interested
Motivation

Planning with multiple agents is hard
 ▶ Joint action space is exponential in the number of agents
 ▶ Agents may be self-interested

Proposed solution: let each agent compute its best response to other agents
Motivation

- Planning with multiple agents is hard
 - Joint action space is exponential in the number of agents
 - Agents may be self-interested
- Proposed solution: let each agent compute its best response to other agents
- Best response: plan that minimizes the cost to the agent, while satisfying its goals
Motivation

- Planning with multiple agents is hard
 - Joint action space is exponential in the number of agents
 - Agents may be self-interested
- Proposed solution: let each agent compute its best response to other agents
- Best response: plan that minimizes the cost to the agent, while satisfying its goals
- Plan for one agent at a time ⇒ use single-agent planners
A multi-agent problem (MAP) is a tuple $\Pi = \langle N, F, I, G, A, \Psi, c \rangle$, where

- $N = \{1, \ldots, n\}$: set of agents
- F: set of fluents
- $I \subseteq F$: initial state
- $G = G_1 \cup \ldots \cup G_n$: goal state
- $A = A_1 \times \ldots \times A_n$: set of actions
- $\Psi : A \rightarrow \{0, 1\}$: admissibility function
- $c = (c_1, \ldots, c_n)$, where $c_i : A \rightarrow \mathbb{R}$ is the cost function of agent i
Notation

A multi-agent problem (MAP) is a tuple $\Pi = \langle N, F, I, G, A, \Psi, c \rangle$, where
- $N = \{1, \ldots, n\}$: set of agents
- F: set of fluents
- $I \subseteq F$: initial state
- $G = G_1 \cup \ldots \cup G_n$: goal state
- $A = A_1 \times \ldots \times A_n$: set of actions
- $\Psi : A \to \{0, 1\}$: admissibility function
- $c = (c_1, \ldots, c_n)$, where $c_i : A \to \mathbb{R}$ is the cost function of agent i

Goal: find a plan $\pi = \langle a^1, \ldots, a^k \rangle$ of joint actions from I to G
Fluents can be partitioned as $F = F_1 \cup \ldots \cup F_n \cup F_{pub}$
Fluents can be partitioned as $F = F_1 \cup \ldots \cup F_n \cup F_{pub}$

Each action $a_i = \langle pre(a_i), eff(a_i) \rangle \in A_i$ satisfies $pre(a_i) \subseteq F_i \cup F_{pub}$ and $eff(a_i) \subseteq F_i \cup F_{pub}$ (trivially extended to negative pre-conditions and effects)
Fluents can be partitioned as $F = F_1 \cup \ldots \cup F_n \cup F_{pub}$.

Each action $a_i = \langle \text{pre}(a_i), \text{eff}(a_i) \rangle \in A_i$ satisfies $\text{pre}(a_i) \subseteq F_i \cup F_{pub}$ and $\text{eff}(a_i) \subseteq F_i \cup F_{pub}$ (trivially extended to negative pre-conditions and effects).

For each agent i, $G_i \subseteq F_i \cup F_{pub}$ (public goals are shared).
Fluents can be partitioned as $F = F_1 \cup \ldots \cup F_n \cup F_{pub}$

Each action $a_i = \langle \text{pre}(a_i), \text{eff}(a_i) \rangle \in A_i$ satisfies $\text{pre}(a_i) \subseteq F_i \cup F_{pub}$ and $\text{eff}(a_i) \subseteq F_i \cup F_{pub}$ (trivially extended to negative pre-conditions and effects)

For each agent i, $G_i \subseteq F_i \cup F_{pub}$ (public goals are shared)

The cost of a plan π to agent i is $C_i(\pi) = \sum_{j=1}^{k} c_i(a^j)$
Admissibility function

- Represents concurrency constraints regarding individual actions
Admissibility function

- Represents concurrency constraints regarding individual actions
- A joint action $a \in A$ is part of the MAP ($\Psi(a) = 1$) or not ($\Psi(a) = 0$)
Admissibility function

- Represents concurrency constraints regarding individual actions
- A joint action $a \in A$ is part of the MAP ($\Psi(a) = 1$) or not ($\Psi(a) = 0$)
- Even though $|A|$ is exponential in n, Ψ can usually be represented compactly
Admissibility function

- Represents concurrency constraints regarding individual actions
- A joint action \(a \in A \) is part of the MAP (\(\Psi(a) = 1 \)) or not (\(\Psi(a) = 0 \))
- Even though \(|A| \) is exponential in \(n \), \(\Psi \) can usually be represented compactly
- Our approach requires quickly checking if a joint action is part of \(\Pi \)
Example

- Set of agents sending packages through a network
- F_i: current location of package i
- Action: send a package across a link of the network
Example (cont.)

- Joint action: each agent acts in parallel
- Cost to agent i of a joint action = number of agents simultaneously sending packages across the same link
Figure shows example joint plan
Cost is suboptimal in areas marked with yellow
Best-Response Planning

Assume that there exists a joint plan $\pi = \langle a^1, \ldots, a^k \rangle$ of length $|\pi| = k$ for solving a MAP
Assume that there exists a joint plan $\pi = \langle a^1, \ldots, a^k \rangle$ of length $|\pi| = k$ for solving a MAP.

Given an agent i, we define a best-response planning (BRP) problem as a tuple $\langle F', A', I', G', c' \rangle$, where

- $F' = F_i \cup F_{\text{pub}} \cup \{\text{time}(0), \ldots, \text{time}(k)\}$
- $I' = (I \cap F') \cup \{\text{time}(0)\}$
- $G' = G_i \cup \{\text{time}(k)\}$
Each joint action of \(\pi \) is of the form \(a^j = (a^j_i, a^j_{-i}) \), where

- \(a^j_i \): the individual action of agent \(i \)
- \(a^j_{-i} \): the joint action of agents other than \(i \)
Each joint action of π is of the form $a^j = (a^j_i, a^j_{\neg i})$, where

- a^j_i: the individual action of agent i
- $a^j_{\neg i}$: the joint action of agents other than i

For each $a_i \in A_i$, let $a = (a_i, a^j_{\neg i})$ be the joint action that replaces a^j_i with a_i
Each joint action of π is of the form $a^j = (a^j_i, a^j_{-i})$, where

- a^j_i: the individual action of agent i
- a^j_{-i}: the joint action of agents other than i

For each $a_i \in A_i$, let $a = (a_i, a^j_{-i})$ be the joint action that replaces a^j_i with a_i

If $\Psi(a) = 1$, add an action a' to A' such that

- $\text{pre}(a') = (\text{pre}(a) \cap F') \cup \{\text{time}(j - 1)\}$
- $\text{eff}(a') = (\text{eff}(a) \cap F') \cup \{\text{not}(\text{time}(j - 1)), \text{time}(j)\}$
- $c'(a') = c_i(a)$
Best-Response Planning (cont.)

- Add noop actions $noop_i$, applicable when agents are done with other actions
Add noop actions $noop_i$, applicable when agents are done with other actions.

For each $a_i \in A_i$, let $a = (a_i, noop_{-i})$ be the joint action composed of a_i and the noop action for each other agent.
Add noop actions $noop_i$, applicable when agents are done with other actions

For each $a_i \in A_i$, let $a = (a_i, noop_{-i})$ be the joint action composed of a_i and the noop action for each other agent

Add an action a' to A' such that

$\triangleright \quad pre(a') = (pre(a) \cap F') \cup \{time(k)\}$

$\triangleright \quad eff(a') = eff(a) \cap F'$

$\triangleright \quad c'(a') = c_i(a)$
Best-Response Planning (cont.)

- To compute the best response of agent i to the actions of other agents, solve the BRP problem using an optimal planner.
- Replace the actions for i with the actions of the new plan.
- Iterate over each agent until no agent can improve its cost.
Given the actions of agents 2 and 3, agent 1 performs best-response planning.
Example (cont.)

- To agent 1, the new plan is cheaper and still solves the problem
- Repeat the process for agent 2
Eventually, no agent can improve their cost by choosing a cheaper plan.
In game theory, a congestion game is a tuple $\langle N, R, A, c \rangle$, where

- $N = \{1, \ldots, n\}$: set of agents
- $R = \{r_1, \ldots, r_m\}$: set of resources
- $A = A_1 \times \ldots \times A_n$, where $A_i \subseteq 2^R - \emptyset$ is the action set of agent i,
- $c = (c_{r_1}, \ldots, c_{r_m})$, where $c_r : N \rightarrow \mathbb{R}$ is the cost function of resource r

An action consists in selecting a non-empty subset of resources
In game theory, a congestion game is a tuple \(\langle N, R, A, c \rangle \), where

- \(N = \{1, \ldots, n\} \): set of agents
- \(R = \{r_1, \ldots, r_m\} \): set of resources
- \(A = A_1 \times \ldots \times A_n \), where \(A_i \subseteq 2^R - \emptyset \) is the action set of agent \(i \),
- \(c = (c_{r_1}, \ldots, c_{r_m}) \), where \(c_r : \mathbb{N} \rightarrow \mathbb{R} \) is the cost function of resource \(r \)

An action consists in selecting a non-empty subset of resources.

The utility function of agent \(i \) is \(u_i(a) = -\sum_{r \in a_i} c_r(\#(r, a)) \)

\(\# : R \times A \rightarrow \mathbb{N} \) counts the number of agents selecting a resource.
Define a potential function \(Q(a) = \sum_{r \in R} \sum_{j=1}^{\#(r, a)} c_r(j) \)

Given two joint actions \((a_i, a_{-i})\) and \((a'_i, a_{-i})\), it holds that
\[
u_i(a_i, a_{-i}) - \nu_i(a'_i, a_{-i}) = Q(a_i, a_{-i}) - Q(a'_i, a_{-i}).\]
Define a potential function \(Q(a) = \sum_{r \in R} \sum_{j=1}^{\#(r,a)} c_r(j) \).

Given two joint actions \((a_i, a_{-i})\) and \((a'_i, a_{-i})\), it holds that
\[
 u_i(a_i, a_{-i}) - u_i(a'_i, a_{-i}) = Q(a_i, a_{-i}) - Q(a'_i, a_{-i}).
\]

Games that satisfy this property are known as potential games.

Iterative best-response is guaranteed to converge to Nash equilibrium.
Define a new utility function $u'_i(a) = u_i(a) - d_i(a_i)$ and a new potential function $Q'(a) = Q(a) - \sum_{j \in N} d_j(a_j)$.
Define a new utility function $u'_i(a) = u_i(a) - d_i(a_i)$ and a new potential function $Q'(a) = Q(a) - \sum_{j \in N} d_j(a_j)$.

It is easy to show that this is still a potential game:

$$Q'(a_i, a_{-i}) - Q'(a'_i, a_{-i}) = Q(a_i, a_{-i}) - d_i(a_i) - \sum_{j \in N - \{i\}} d_j(a_j) -$$

$$Q(a'_i, a_{-i}) + d_i(a'_i) + \sum_{j \in N - \{i\}} d_j(a_j) =$$

$$= Q(a_i, a_{-i}) - Q(a'_i, a_{-i}) - d_i(a_i) + d_i(a'_i) =$$

$$= u_i(a_i, a_{-i}) - u_i(a'_i, a_{-i}) -$$

$$= u'_i(a_i, a_{-i}) - u'_i(a'_i, a_{-i})$$
Congestion Planning

Let $R = \{r_1, \ldots, r_m\}$ be a set of resources, each with a cost function $c'_r : \mathbb{N} \to \mathbb{R}$
Let $R = \{r_1, \ldots, r_m\}$ be a set of resources, each with a cost function $c'_r : \mathbb{N} \to \mathbb{R}$.

A congestion planning problem (CPP) is a MAP augmented with R and $c' = (c'_{r_1}, \ldots, c'_{r_m})$ such that each action a_i is associated with a subset of resources $R(a_i) \subseteq R$ and
Congestion Planning

Let $R = \{r_1, \ldots, r_m\}$ be a set of resources, each with a cost function $c'_r : \mathbb{N} \to \mathbb{R}$.

A congestion planning problem (CPP) is a MAP augmented with R and $c' = (c'_{r_1}, \ldots, c'_{r_m})$ such that each action a_i is associated with a subset of resources $R(a_i) \subseteq R$ and

1. $F_{pub} = \emptyset$
2. $\Psi(a) = 1$ for each joint action $a \in A$
3. The cost function of agent i is $c_i(a) = \sum_{r \in R(a_i)} c'_r(\#(r, a)) + d_i(a_i)$
4. A noop action $noop_i$ uses no resources and incurs no cost, i.e. $R(noop_i) = \emptyset$ and $d_i(noop_i) = 0$
Theorem

For congestion planning problems, best-response planning is guaranteed to converge to a Nash equilibrium.

Proof.

For each joint plan $\pi = \langle a^1, \ldots, a^k \rangle$, define a potential function $Q(\pi) = \sum_{j=1}^{k} Q'(a^j)$. Consider two plans π and π' that only differ on the action choice of agent i. We have

$$Q(\pi) - Q(\pi') = \sum_{j=1}^{k} (Q'(a^j) - Q'(a'^j)) = \sum_{j=1}^{k} (u'_i(a^j) - u'_i(a'^j)) = \sum_{j=1}^{k} (c_i(a'^j) - c_i(a^j)) = C_i(\pi') - C_i(\pi).$$
Example (cont.)

- Example MAP is a CPP!
- No public fluents nor goals
- Resources = links, cost of a link = number of agents using it
Experiments

- Two sets of experiments with BRP
- First set: network example, for different numbers of nodes and agents
- Second set: IPC domains with multi-agent flavor
- For each BRP problem, generate corresponding problem in PDDL
- Use HSP_f [Haslum 2008] to plan optimally
Network Example

- Example of a congestion planning problem
- Finding initial plan is easy (just assume no other agents are using resources)
- By the previous theorem, BRP is guaranteed to converge to a Nash equilibrium
- For 100 nodes and 100 agents, BRP converges in 10 minutes
IPC Domains

- Multi-agent problems from Logistics, Rovers, and Satellite
- Use DisCSP planner [Nissim et al. 2010] to find initial plans
- In Rovers, HSP$_f$ fails to solve BRP problems, so we use LAMA [Richter & Westphal 2010] to generate suboptimal plans
IPC Domains (cont.)

<table>
<thead>
<tr>
<th>Prob.</th>
<th>DisCSP</th>
<th></th>
<th></th>
<th></th>
<th>BR-Optimal</th>
<th></th>
<th></th>
<th></th>
<th>BR-Satisficing</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Log_3_1</td>
<td>1.3</td>
<td>10</td>
<td>9</td>
<td>0.2</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Log_4_2</td>
<td>307.0</td>
<td>14</td>
<td>12</td>
<td>0.6</td>
<td>3</td>
<td>14</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rov_3</td>
<td>53.0</td>
<td>33</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>179.6</td>
<td>2</td>
<td>34</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Rov_4</td>
<td>408.4</td>
<td>44</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>414.8</td>
<td>2</td>
<td>45</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Rov_5</td>
<td>784.2</td>
<td>55</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2170.7</td>
<td>3</td>
<td>55</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Rov_6</td>
<td>3958.7</td>
<td>66</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2235.2</td>
<td>2</td>
<td>66</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Sat_2</td>
<td>0.5</td>
<td>7</td>
<td>4</td>
<td>0.2</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>0.8</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sat_4</td>
<td>1.2</td>
<td>14</td>
<td>6</td>
<td>1.5</td>
<td>2</td>
<td>14</td>
<td>4</td>
<td>5.7</td>
<td>3</td>
<td>14</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Sat_6</td>
<td>3.4</td>
<td>21</td>
<td>8</td>
<td>19.4</td>
<td>2</td>
<td>21</td>
<td>4</td>
<td>13.5</td>
<td>2</td>
<td>21</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Sat_8</td>
<td>25.5</td>
<td>28</td>
<td>10</td>
<td>178.0</td>
<td>2</td>
<td>28</td>
<td>4</td>
<td>37.6</td>
<td>2</td>
<td>28</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

(Jonsson & Rovatsos, Best-Response Planning)
Conclusion

- A single-agent approach to multi-agent planning
- Each agent optimizes its own cost
- For congestion planning problems, guaranteed to converge
- In practice, converges in three IPC domains
Future Work

- Determine convergence guarantees for larger classes of MAPs
- Use single-agent approach to generate initial plans
- Best-response planning when public goals are not shared by agents
- Advances in single-agent planning will benefit BRP