TOGETHER WE MAKE TOMORROW MORE BEAUTIFUL
Content

- Introduction to ecodesign
- Ecolizer 2.0
- Second ecodesign tool: OVAM SIS Toolkit
Introduction to ecodesign
Introduction to ecodesign
Ecolizer 2.0 - history

- First Ecolizer in 2005
- Comparing materials and processes at design stage
- Analysis of designs or existing products
- Link between academic knowledge and design practice
- Introduction of ecodesign in a look and feel for designers
Ecolizer 2.0

- Cards with eco-indicators (EI)
- Measure of environmental impact
- The higher the indicator, the greater environmental impact
- Expressed in mPt/unit (kg, m, m², tonkm, etc)
- Integrated environmental impact
- Lifecycle perspective
Ecolizer 2.0

- Defining functional unit
- Introduction life cycle thinking
- Estimating dominant product lifecycle phases
- Environmental impact of
 - materials
 - production processes and -manufacturing
 - use
 - waste and recycling
Ecolizer 2.0 - Overview of the optimizations

- ReCiPe method replaces the Eco-Indicator ‘99 method
- More data on materials and processes
- Printed recto - verso Dutch - English
- Indicators with quality score
- Colour indication chapters
- More interpretation, especially about waste phase and recycling
Ecolizer 2.0 - Dissemination and future

- Workshops with partner organizations
- Further feedback from target group and federations
- Update every 3 years
- Digital/online version in 2012
- Completed by the OVAM SIS Toolkit in 2011
Starting early in process / define level of innovation

1. Product improvement
2. Product redesign
3. Function innovation
4. System innovation

Type 1
Type 2
Type 3
Type 4
Level 1. Product improvement

• The existing product is at the end of its market life and must be replaced by a new product that sells well again
• Adjustments are particularly the choice of materials, components and aesthetic innovations
• Development of a short time and low risk, the product will therefore be quickly outdated again
Level 2. Product redesign

- The technology of the product is updated and ready for production for new applications
- The operating concept of the product is reviewed and questioned
Level 3. Function innovation

- The total product system is questioned in relation to the needs of the user
- Looks at different ways of filling the need without the product in mind
- Benefits
 - Products and their producers are still needed
 - Producers have every interest in designing products as sustainable and flexible as possible
 - They often remain responsible during the lifetime of the product
 - Consumers will have more access to different products
Level 4. System innovation

- Entire technological system is replaced by a new system
Second ecodesign tool: OVAM SIS Toolkit

- OVAM SIS (Sustainable Innovation System) Toolkit is a tool that shows different dimensions of ecodesign.
- It combines three perspectives on sustainability:
 - life cycle thinking (often used in design practice)
 - management perspective (maximizing value)
 - strategic perspective (from the mission, vision and ambition of a company).
- The instrument is versatile and broadens horizons in ecodesign. It specifies that other sustainability strategies are possible.
1. Value creation as ultimate goal
The purpose of design, and particularly eco-design, is always value creation.

Designers are used to the fact that their solutions have to generate an economic surplus - or financial capital. Ecodesigners link that economic boundary condition to the desire to create also natural capital (associated to users’ quality of life), intellectual capital (knowledge), and social capital (embedded in networks and relationships).

The SIS Toolkit widens the perspective used to three additional forms of value creation: human capital (associated to users’ quality of life), intellectual capital (knowledge), and social capital (embedded in networks and relationships).

The Sustainable Innovation System invites designers to develop solutions that potentially contribute to five types of value:

2. The strategic/functional dimension
The potential for value creation is crucially determined by the scope of the design space that a design team is able (or allowed) to envisage. That space is defined by the ambition of the (client) organization, the needs one wants to serve and the way in which the design process is organized.

Ambition refers to the vision on the impact that is envisaged with the innovation project.

The SIS-matrix invites users to clarify their ambitions with respect to all five dimensions of value creation. What do we want to achieve in terms of social, natural or other forms of capital?

An understanding of people’s needs is supposed to drive any innovation process.

The SIS-matrix offers tools and approaches to identify current and future needs as a basis for sustainable value creation.

The way in which a design process is organized has to cohere with the espoused ambitions and the needs identified. For example, if the creation of human capital is a key element in the innovation project, then it follows that the user will have to be actively implicated in the design. In that way the design process itself can be a source of value.

3. Life cycle
Life cycle thinking has always been a prominent logic underpinning eco-design. The SIS Toolkit offers prompts to think about value creation as a function of three generic life stages:

- Production (materials use and production process)
- Distribution and use
- End of life
URL
www.ovam.be/ecodesign/eng
www.ovam.be/ecolizer/eng
www.ovam.be

Contact
ecodesign@ovam.be
TOGETHER WE MAKE TOMORROW MORE BEAUTIFUL

www.ovam.be
info@ovam.be

T: 015 284 284
F: 015 203 275

Public Waste Agency of Flanders
Stationsstraat 110
B-2800 Mechelen