“AN E-FREIGHT PLATFORM FOR THE EUROPEAN FREIGHT TRANSPORT COMMUNITY”

The e-Freight Platform Architecture

Takis Katsoulakos, Yannis Zorgios, Howard Foster, Bill Karakostas

takis@inlecom.com
Agenda

• Scope and objectives
• Architectural Approach
• Stakeholder requirements
• e-Freight Platform Features
• Business Architecture
• Data Architecture
• Conclusions
The e-Freight Platform Objectives

Provide a comprehensive software infrastructure to facilitate the development and deployment of e-Freight Solutions in compliance with the e-Freight Framework

Promote reuse interoperability and data security and quality

e-Freight receives funding from the EC FP7 Sustainable Surface Transport Programme
The strategy is to enable different transport stakeholders including SMEs to establish e-Freight compliant solutions running in their own operating environments.
The overall e-Freight Concept

- **e-Freight Framework**
 - Is used by
 - e-Freight Platform
 - Facilitates the development of
 - Provides a repository of
 - Consist of
 - e-Freight Solutions
 - Support the execution of
 - e-Freight Services
 - Supports different implementation options
 - Stakeholder's operational environments (.NET, Java, Oracle, SQL, etc)

e-Freight receives funding from the EC FP7 Sustainable Surface Transport Programme
Architecture Approach

• The specification of the e-Freight Platform Architecture is guided methodologically by the Open Group Architecture Framework (TOGAF).

• TOGAF is a holistic approach to design, which is typically modeled at four levels:
 – Business
 – Application
 – Data
 – Technology.
TOGAF Building Blocks in Architecture Design

A. Architecture Vision
- High-level model of candidate building blocks

B. Business Architecture

C. Data/Application Architecture

D. Technology Architecture
Step 1: Select Reference Models, Viewpoints, and Tools
Step 2: Develop Baseline Architecture Description
- High-level model of existing building blocks, re-using definitions from the Architecture Repository where they are available
Step 3: Develop Target Architecture Description
- Develop view of required building blocks through the creation of catalogs, matrices, and diagrams of the architecture
- Fully document each building block
- Document rationale for building block decisions in architecture document
- Identify the impacted building blocks, checking against a library of building blocks within the Architecture Repository and re-using where appropriate
- Where necessary, define new building blocks
- Select standards for each building block, re-using as much as possible from reference models selected from the Architecture Continuum
- Document final mapping of the building blocks to the Architecture Landscape
- From selected building blocks, identify those that might be re-used, and publish as standards or reference models via the Architecture Repository

Step 4: Perform Gap Analysis
- Identify building blocks carried over
- Identify eliminated building blocks
- Identify new building blocks
- Identify gaps and determine realization approach (e.g., to be developed or to be procured)

Step 5: Define Roadmap Components
Step 6: Resolve Impacts across the Architecture Landscape
Step 7: Formal Stakeholder Review
Step 8: Finalize the Architecture
Step 9: Create the Architecture Definition Document
e-Freight Platform Architecture Vision

1. **Alignment of EU Policy, Business and IT.** The architecture should facilitate:
 - Maintaining cohesion between EU Policy, Business (represented by the e-Freight Framework) and IT through e-Freight Solutions
 - Controlling complexity and change management costs
 - Supporting adaptability of the European freight transport system to economic, social and environments drivers

2. **Efficient development and change management** with respect to business objectives of specific transport networks

3. **Support large scale adoption of e-Freight solutions in the EU freight logistics and transport community**

E-Freight receives funding from the EC FP7 Sustainable Surface Transport Programme
Alignment of EU Policy, Business and IT

<table>
<thead>
<tr>
<th>Short Title</th>
<th>Detailed Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Align EU policies, business</td>
<td>Provide facilities to manage alignment of EU policy rules and regulations with business services and process in the e-Freight Framework models. Help achieve and maintain industry and regulatory compliance with robust data protection, policy enforcement and auditing capabilities to demonstrate compliance.</td>
</tr>
<tr>
<td>services and their processes</td>
<td></td>
</tr>
</tbody>
</table>
| Core Application Services | Provide core freight transport application services as main business processes for:
 a) Common Long Term Planning
 b) Operations Management
 c) Regulatory Information Management |
| Core Data Services | Provide core freight transport data services to support the core application and extended services |
| Support Domain Knowledge | Provide a domain modeling features to support the description, definition and analysis of core domain knowledge artifacts which will assist:
 a) Making domain knowledge an organisational asset
 b) Forming customer solutions in a standard way
 c) Streamlining processes to reduce time, effort and environmental impact
 d) Efficient change management and quality assurance |
| Modeling and Analysis | |
| Reduce Environmental Impact | Support increased visibility of carbon footprint for each shipment. Facilitate long term and operational planning for optimised environmental impact |
| Greater Freight Visibility | At any point in time the planned activity for any movement is known and can be queried by transport service providers, customers, regulatory bodies and port authorities. |
| Efficient Services | Provide facilities to schedule logistics operations in real-time, dynamically optimising transport schedules in response to operational events and issues. |
| Align Business Services and IT | Support the adoption of an SOA design and governance practice through platform features to:
 a) Describe, discover and adopt business services from a business service catalogue
 b) Describe, discover and adapt IT services to enable rapid reuse of existing technical solutions
 c) Assist governance of services through management tools in moderating changes and upholding service quality |
| Services through a Service-Oriented Architecture | |
| Monitoring and Auditing | Support transaction and application monitoring. Provide reports for auditing the system performance and usage.
 a) Provide transaction monitoring and alerting for distributed e-Freight Solutions and their services
 b) Trace for measurable load
 c) Provide SLA-based service monitoring and reporting |
Efficient Development and Change Management

<table>
<thead>
<tr>
<th>Short Title</th>
<th>Detailed Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Governance</td>
<td>Assist governance of domain knowledge through management tools in moderating changes and upholding quality.</td>
</tr>
</tbody>
</table>
| Model-Driven Development | Provide a development environment to support the description, definition and analysis of core domain knowledge artifacts which will assist:
 a) Developing composite applications by different groups of stakeholders combining core application services and data services with existing systems
 b) Provide quality assurance through model-driven validation and verification mechanisms.
 c) Provide a development approach with a standard application framework, notations and vocabularies guided by the tools |
| Agile Software Development | Focus on providing development support with the following aspects of software development in mind:
 a) Improve customer satisfaction through iterative and incremental delivery of working solutions
 b) Provide tools for efficient and ease in changing application requirements (even at the late stages of development)
 c) Deliver solutions frequently - weeks rather than months
 d) Working software is the principal measure of progress |
| Service-Oriented Development | Assist Service-Oriented Development by:
 a) Providing common standard vocabularies (data models and semantics) for messaging between services in e-Freight solutions
 b) Providing standard integration services to support the interoperability with cargo, vehicle, traffic and infrastructure monitoring devices.
 c) Providing standard data services to support the application interoperability between e-Freight Solutions
 d) Providing common collaboration tools enabling the SOA design principles and utilising the above assets |
<table>
<thead>
<tr>
<th>Short Title</th>
<th>Detailed Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution Repository</td>
<td>Provide efficient distribution, integration and development services and knowledge for e-Freight Solution adopters</td>
</tr>
<tr>
<td></td>
<td>a) Provide a centralized facility for distributing e-Freight solutions across the industry partners (e.g. an AppStore type repository from where e-Freight solutions or/and individual services may be downloaded by those who want to implement solutions in the e-Freight domain).</td>
</tr>
<tr>
<td></td>
<td>b) Provide publishing support and advertisement of available application services and common data schemas.</td>
</tr>
<tr>
<td>Support Solution Discovery</td>
<td>a) Enable efficient search of e-Freight Solutions from federated registries (Solution Discovery)</td>
</tr>
<tr>
<td></td>
<td>b) Enable transport providers in all modes to provide information about their service offerings and register services</td>
</tr>
<tr>
<td></td>
<td>c) Support focused searches on transport user needs to identify and use combined transport services most suited for their purposes</td>
</tr>
<tr>
<td></td>
<td>d) Support different transport communities to create their own platform registries.</td>
</tr>
<tr>
<td>Assured Messaging Infrastructure</td>
<td>It is assumed that most stakeholder will use their own Messaging Infrastructure and Message Routing and Distribution. Requirements relating to improving security need to be further investigated.</td>
</tr>
<tr>
<td>Hosting Support</td>
<td>Provide support for managing hosting of e-Freight solutions</td>
</tr>
<tr>
<td></td>
<td>a) e-Freight Solution properties (such as data sources) should be configurable and scripted installation should enable automated deployment and execution</td>
</tr>
<tr>
<td></td>
<td>b) Deployment models should reflect a separation between application and administration tasks, that is, developers should define and maintain the configuration of an application and deployment teams the environmental properties.</td>
</tr>
<tr>
<td></td>
<td>c) Multiple deployments of e-Freight platforms shall be supported on single environments (i.e. servers) and should be maintained independently.</td>
</tr>
<tr>
<td></td>
<td>d) Provide tools to support tracking outages and inefficiencies by helping manage and automate service upgrades</td>
</tr>
<tr>
<td></td>
<td>e) Provide a standards-based Security Framework to help lower costs and complexities of securing e-Freight Solutions</td>
</tr>
</tbody>
</table>

e-Freight receives funding from the EC FP7 Sustainable Surface Transport Programme
Core Application Services

<table>
<thead>
<tr>
<th>Short Title</th>
<th>Detailed Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Long Term Planning</td>
<td>Features required from this core application include:</td>
</tr>
<tr>
<td></td>
<td>a) Provide facilities to schedule logistics operations in real-time, dynamically optimising transport schedules in response to operational events and issues</td>
</tr>
<tr>
<td></td>
<td>b) Facilitate generation of more accurate inputs for optimization algorithms</td>
</tr>
<tr>
<td></td>
<td>c) Facilitate generation of deviation matrices</td>
</tr>
<tr>
<td></td>
<td>d) Provide services for better utilisation of resources leads to fewer wasted movements and so lower carbon footprint</td>
</tr>
<tr>
<td>Operations Management</td>
<td>Features required from this core application include:</td>
</tr>
<tr>
<td></td>
<td>a) Track capacity on specific road segments and generally corridors</td>
</tr>
<tr>
<td></td>
<td>b) Support visualization of combined modalities</td>
</tr>
<tr>
<td></td>
<td>c) Visibility at any point in time of planned activities for any movement, which can be queried by transport service providers, customers and regulatory authorities</td>
</tr>
<tr>
<td>Regulatory Information Management</td>
<td>Features required from this core application include:</td>
</tr>
<tr>
<td></td>
<td>a) Provide interoperability for reporting with existing regulatory systems at both National and European levels</td>
</tr>
<tr>
<td></td>
<td>b) Provide a Common Reporting Facility for common regulatory submissions</td>
</tr>
<tr>
<td></td>
<td>c) Provide Shared Information Services for reporting to users on regulatory information</td>
</tr>
<tr>
<td></td>
<td>d) Provide support for a Single Transport Document</td>
</tr>
<tr>
<td></td>
<td>e) Support information exchange between administrations for security management</td>
</tr>
</tbody>
</table>

e-Freight receives funding from the EC FP7 Sustainable Surface Transport Programme
e-Freight Platform Features

- **e-Freight Solution Development Services**
 - Domain knowledge modelling
 - Development Environment
 - Change management
 - Distribution Facility

- **Support Services**
 - Service discovery
 - Monitoring & Control
 - Security Management
 - Simulation Optimisation

- **Data and Quality Management Services**
 - Device integration
 - Registries and Repositories
 - Quality management

- **Core Application Services**
 - Establish common long term Plans
 - Manage Operations
 - Manage Single Transport Document
 - Manage Regulatory Information

- **User Applications**
 - User Applications Development Environment
 - Registries and Repositories
 - Distribution Facility
 - Monitoring & Control

- **Ontology**
- **Metadata Repository**

e-Freight receives funding from the EC FP7 Sustainable Surface Transport Programme
the platform architecture can support increased usability, adoption and resilience to changes through the following technical opportunities:

- Technology Independence through Virtual Runtime Environments (e.g. .NET or JAVA)
- Technology Independence through a Layered Services Pattern (e.g. adopting an SOA Pattern)
- Flexible Resource Management (e.g. utilizing a Cloud-Computing Pattern)
- Reusable Services and Governance (e.g. Services in e-Freight conform to e-Freight standards)
- Quality Assurance Mechanisms (i.e. to ensure service quality is upheld in service development)
Business Architecture – Use Cases

e-Freight Platform Use-Cases

Composer

«uses»

Integrator

«uses»

Collaborator

«uses»

Domain Expert

«uses»

EU Regulator

«uses»

Legacy Systems

«uses»

Compose new solutions

Create domain models

Publish solution

Integrate existing solutions

Collaborate with existing solutions

e-Freight receives funding from the EC FP7 Sustainable Surface Transport Programme
e-Freight will employ a Meta Data Repository (MRD) in order to provide both a conceptual and operational organizational facility of all required information for the implementation, integration and execution of e-Freight community applications.
Data Quality

• As in other domains e-Freight stakeholders will rely on quality information for effective operations and decision-making.

• However, fundamental questions still remain as to how quality should be defined and the specific criteria that should be used to manage data quality.

• Our approach is based upon formal methods to link data semantics with business rules for determining the level of data quality at different semiotic levels (i.e. syntactic, semantic and Usefulness / Data Fitness)
Conclusions

• The e-Freight platform is intended to support the implementation of e-Freight EU policy by facilitating the development of e-Freight Solutions compatible with a standardised e-Freight framework addressing the following three processes:
 – Regulatory Information Management
 – Long Term Planning of Logistic Solutions
 – Transport and logistics Operations Management

• Focus on Single Window, Single Transport Document, Security management by authorities and Deployment of Intelligent Transport Systems
Conclusions

- Key e-Freight Platform features include:
 - Aligning policy, business and IT by combining domain engineering and service engineering approaches
 - Promoting the use of appstores for e-Freight Solutions with specific focus on easy access for SMEs
 - Providing tools to facilitate integration of e-Freight Solutions with existing applications
 - Making available common services for enhanced data quality and security.
The actual outputs so far...

e-Freight Platform Live

http://www.efreightproject.eu/knowledge/
Thank you