Efficient & Integrated Transport Processes

EIT - Efficient & Integrated Transport Processes

e-FREIGHT 2011

2011-05-11
Sten Lindgren, Odette Sweden
Bror Gustafsson, Meridion
Agenda

- Introduction and background
- Project scope
- Consortium
- Project plan & work packages
- Collection of requirements
- Future safety and security requirements
- Future environmental data requirements
- EIT Reference Model and Transport Scenarios
- B2B Communications
- EIT Information Model
- Expected final result
Introduction and background

Pharos EDI Guidelines for Transports have been available in Sweden/Scandinavia since the nineties. They cover scenarios like booking, instructions, status report and freight invoice. Pharos Guidelines are much used with some exceptions (one is automotive).

Pharos was published by the "Swedish International Freight Association, SIFA". For a long time SIFA and Odette Sweden have been looking for a way to update Pharos and to take into account new requirements including automotive ones.

When Odette Sweden made a "painpoint survey" among automotive suppliers "transport processes" came up. (Lack of homogeneous transport processes)

The FFI program is sponsored by the Swedish government and automotive industry for joint funding of research, innovation and development concentrating on Climate & Environment and Safety. One part of the program covers "Transport Efficiency"

Discussions led to gathering of a strong consortium for developing a new recommendation for information exchange taking into account new requirements in logistics, transport safety and environmental aspects. An application to FFI was made and then approved.

A project in the Swedish FFI program

FFI - Strategic Vehicle Research and Innovation

transporteffektivitet.se
Project scope
Aim and definition of the project

Identify and analyze possibilities to develop and harmonize administrative processes, business collaboration and process integration between transport providers, industry and authorities to improve transport efficiency according to new requirements and applications in the area of sustainable and safe transports.

Enabler for developing collaborative business models, business communication is increased usage of IT and system integration.

Project directives
- Industrial, repetitive and (long term) contracted transports
- Primary focus on process and information interface between the transport system and the sender/receiver
- Geographical view
 - Transport processes in Europe
 - General requirements for import and export from/to Europe
- Excluded transport modes
 - Air Freight
 - Deep sea shipping
Consortium

Project Mgmt and support:

Industry Partners:

Forwarders:

Universities and research bodies:

Government:

Research bodies responsibilities

FKG represented by the following component suppliers:
• Autoliv
• Bulten
• Gestamp HardTech
• Haldex
• Kongsberg Automotive
• Plastal
• SKF

BEAst has aligned with their own project (the Swedish Building & Construction Industry’s Electronic Business Standard)
Project plan & work packages

Project running from January 2010 to December 2011

Mapping current transport processes and information exchange
- Pharos
- Automotive OEMS and 4PL
- Automotive Suppliers, large and SMEs
- 3 PL and Forwarders
- Building & Construction incl. Distribution and Trade
- Retail
- Intermodal transports

Additional requirements and information exchange
- Intermodality (not supported in Pharos)
- Requirements derived from complex transport chain scenarios
- New Customer requirements on transports related to logistics and traceability
- Environmental information related to transports
- New Transport Safety information requirements
- Other legal requirements like ICS (Customs)
Collection of requirements

- Identify requirement owner
- Identify positive effects with the new requirement
- Organize and document collected requirements
- Categorize requirements according to impact on efficiency, safety, environmental data
- Prioritize requirements (low, medium or high)
- Integration of prioritized requirements in EIT

<table>
<thead>
<tr>
<th>ID</th>
<th>Source</th>
<th>Requirement description</th>
<th>Relations</th>
<th>Category</th>
<th>Status</th>
<th>Priority</th>
<th>Responsibility</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DB Schenker</td>
<td>Missing correct postal codes for collection and delivery of goods.</td>
<td>TSP/TU</td>
<td>Transport efficiency</td>
<td>Approved</td>
<td>WP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Customs</td>
<td>EORI-nummer (Economic Operator Registration)</td>
<td>Authorities/TSP/TU</td>
<td>Transport safety</td>
<td>Approved</td>
<td>WP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TA-suppliers</td>
<td>Common waybill for every transport mode</td>
<td>TSP/TU</td>
<td>Transport efficiency</td>
<td>Approved</td>
<td>WP3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Future safety and security requirements

- Geo-fencing
- Time-fencing
- Track & Trace
- Proof of collection, POC
- Proof of delivery, POD
Future environmental data requirements

- Results
 - Eco efficient transports: More benefit/value, less cost/environmental impact
 - Vehicle manufactures can select most eco efficient transport supply chain
 - Flexibility within the transport supply chain possible through communicated requirements

- Deliverables
 - A data model or “communication protocol” for the exchange of detailed environmental parameter data between parties in the transport chain
 - An Implementation Guideline to be used for follow up reports, as a bases for transport agreements etc.
Findings

- **Automotive OEMS and 4PL (Volvo Logistics, SKF Logistics, Scania)**
 - Main entities (articles / packaging vs. shipments)
 - Track & Trace
 - Transport optimization and better use of capacity
 - Proactive actions when discrepancies occur

- **Automotive Suppliers (Gestamp Hardtech, Kongsberg Automotive)**
 - Inefficient transport booking procedures
 - Invoice control difficult (matching)
 - Low awareness of Customs declaration procedures
EIT Reference Model

- Why is a new reference model needed?
Transport scenarios

Transport user

Freight forwarder (Leg 1-3)

Freight Forwarder (Leg 1-2)

Cconsignor

Road transport
Leg 1

Pick-up location

Reloading Hub

RoRo Ferry
Leg 2

Reloading Hub

Road transport
Leg 3

Drop-off location

Cconsignee

A project in the Swedish FFI program
FFI - Strategic Vehicle Research and Innovation
transporteffektivitet.se

e-Freight
2011-05-12
Transport scenarios

Transport user

4PL (Leg 1-3)

Freight Forwarder (Leg 1-2)

Freight Forwarder (Leg 3)

Consignor

Road transport Leg 1

Pick-up location

Reloading Hub

RoRo Ferry Leg 2

Reloading Hub

Road transport Leg 3

Drop-off location

Consignee

EIT

Efficient & Integrated Transport Processes

A project in the Swedish FFI program

FFI - Strategic Vehicle Research and Innovation
Transport scenarios

- Consignor
 - Road transport (Leg 1)
 - Pick-up location
- Reloading Hub
 - RoRo Ferry (Leg 2)
 - Forwarder (Leg 2)
- Ferry operator
 - Forwarder (Leg 2)
- Consignee
 - Road transport (Leg 3)
 - Drop-off location
- Transport user
 - 4PL (Leg 1-3)
 - Freight Forwarder (Leg 1-2)
 - Freight Forwarder (Leg 3)
EIT Reference Model (Draft)

Business processes
- Goods ordering and supply
- Transport service contracting
- Transport Planning and Preparation
- Transport Execution
- Transport Completion

Efficient & Integrated Transport Processes

A project in the Swedish FFI program
FFI - Strategic Vehicle Research and Innovation

transporteffektivitet.se
EIT Reference Model - Execution (Draft)

![Diagram of e-Freight execution process]

- Physical flow containing information
- Electronic information flow
- Transport mean

A project in the Swedish FFI program
FFI - Strategic Vehicle Research and Innovation

transporteffektivitet.se
EIT Reference Model - Execution

Efficient & Integrated Transport Processes

A project in the Swedish FFI program
FFI - Strategic Vehicle Research and Innovation

transporteffektivitet.se

e-Freight
2011-05-12
EIT Reference Model - Completion (Draft)
Main message: Any guideline for B2B data exchange must fit into existing "architecture" and standards in use. 95% of total goods volume among 3 largest forwarders in Sweden is handled by EDI.
EIT Information Model

- EIT is using a data modelling tool (GEFEG FX) for the creation of the EIT Information Model
- The Information Model builds on a Business Process Model
- An Information Model contains a description of relations between entities
- Entities are defined in a standardised Glossary of Terms

- As a first step EIT has developed an Information Model that reflects functionality as described in the old PHAROS framework

- To this will be added all agreed new requirements
- The Information Model could then be used for specifying detailed EDI specifications in a chosen syntax, like EDIFACT or XML
Expected final result

- A generic Transport Business Process Model with various scenario descriptions

- A Guideline on how to apply detailed Environmental Data Parameters between Trading Partners in the Transport Chain – as part of the normal commercial data exchange

- An Information Model based on standardised business entities from a Glossary of Terms, also listing what messages could be used for data exchange
Thank you for listening

sten.lindgren@odette.se
bror.gustafsson@meridion.se