Three Aspects of Gödel’s Program: Supercompactness, Forcing axioms, Ω-logic

Matteo Viale

Dipartimento di Matematica
Università di Torino

28th April 2011
Wien
Corollary (Todorčević, 1989)

Assume $P \subseteq \mathbb{R}^2 \setminus \Delta$ is an open symmetric set. Then exactly one of the following holds:

1. There is a closed uncountable set C such that $C^2 \subseteq P$,
2. $\mathbb{R} = \bigcup_{n \in \mathbb{N}} C_n$ where each C_n is a closed set and $C_n^2 \cap P = \emptyset$.

$\Delta = \{ (x, x) : x \in \mathbb{R} \}$ is the diagonal,

Symmetric sets which do not intersect the diagonal are determined by their intersection with the half plane $H = \{ (x, y) \in \mathbb{R}^2 : x > y \}$.
Corollary (Todorčević, 1989)

Assume $P \subseteq \mathbb{R}^2 \setminus \Delta$ is an open symmetric set. Then exactly one of the following holds:

1. There is a closed uncountable set C such that $C^2 \subseteq P$,
2. $\mathbb{R} = \bigcup_{n \in \mathbb{N}} C_n$ where each C_n is a closed set and $C_n^2 \cap P = \emptyset$.

$\Delta = \{(x, x) : x \in \mathbb{R}\}$ is the diagonal,
Corollary (Todorčević, 1989)

Assume \(P \subseteq \mathbb{R}^2 \setminus \Delta \) is an open symmetric set. Then exactly one of the following holds:

1. There is a closed uncountable set \(C \) such that \(C^2 \subseteq P \),
2. \(\mathbb{R} = \bigcup_{n \in \mathbb{N}} C_n \) where each \(C_n \) is a closed set and \(C_n^2 \cap P = \emptyset \).

\(\Delta = \{(x, x) : x \in \mathbb{R}\} \) is the diagonal,

\(P \) is symmetric if \((a, b) \in P \iff (b, a) \in P \),

\(\Sigma_1^1 \)-statement OCA*
Corollary (Todorčević, 1989)

Assume $P \subseteq \mathbb{R}^2 \setminus \Delta$ is an open symmetric set. Then exactly one of the following holds:

1. There is a closed uncountable set C such that $C^2 \subseteq P$,
2. $\mathbb{R} = \bigcup_{n \in \mathbb{N}} C_n$ where each C_n is a closed set and $C_n^2 \cap P = \emptyset$.

$\Delta = \{(x, x) : x \in \mathbb{R}\}$ is the diagonal,

P is symmetric if $(a, b) \in P \iff (b, a) \in P$,

Symmetric sets which do not intersect the diagonal are determined by their intersection with the half plane

$$H = \{(x, y) \in \mathbb{R}^2 : x > y\}$$
Open partitions of H. I
Open partitions of \mathcal{H}. II
Open partitions of H. III

A trivial example of case 1
Open partitions of H. IV

An example of case 2
Open partitions of $H. V$

A non trivial example example of case 1
Theorem (Todorčević)

Assume the proper forcing axiom PFA. Then for every $X \subseteq \mathbb{R}$ and every open and symmetric $P \subseteq \mathbb{R}^2$ exactly one of the following holds:

1. There is a closed set C such that $C^2 \subseteq P$ and $C \cap X$ is uncountable,
2. There is a countable family of closed sets C_n such that $X \subseteq \bigcup_{n \in \mathbb{N}} C_n$ and $C_n^2 \cap P = \emptyset$ for all n.
Theorem (Shoenfield, 1961)

Assume ϕ is a Π^1_2-statement. If there is an uncountable transitive model M of ZFC such that $M \models \phi$, then ϕ holds in all transitive uncountable models of ZFC.
Theorem (Shoenfield, 1961)

Assume ϕ is a Π^1_2-statement. If there is an uncountable transitive model M of ZFC such that $M \models \phi$, then ϕ holds in all transitive uncountable models of ZFC.

Most of mathematics occurs in the realm of Π^1_2-problems, for example:
Theorem (Shoenfield, 1961)

Assume ϕ is a Π^1_2-statement. If there is an uncountable transitive model M of ZFC such that $M \models \phi$, then ϕ holds in all transitive uncountable models of ZFC.

Most of mathematics occurs in the realm of Π^1_2-problems, for example:

- Riemann’s hypothesis,
Theorem (Shoenfield, 1961)

Assume ϕ is a Π^1_2-statement. If there is an uncountable transitive model M of ZFC such that $M \models \phi$, then ϕ holds in all transitive uncountable models of ZFC.

Most of mathematics occurs in the realm of Π^1_2-problems, for example:

- Riemann’s hypothesis,
- Poincaré’s conjecture,
Theorem (Shoenfield, 1961)

Assume ϕ is a Π^1_2-statement. If there is an uncountable transitive model M of ZFC such that $M \models \phi$, then ϕ holds in all transitive uncountable models of ZFC.

Most of mathematics occurs in the realm of Π^1_2-problems, for example:

- Riemann’s hypothesis,
- Poincaré’s conjecture,
- $P \neq NP$,

Theorem (Shoenfield, 1961)

Assume ϕ is a Π^1_2-statement. If there is an uncountable transitive model M of ZFC such that $M \models \phi$, then ϕ holds in all transitive uncountable models of ZFC.

Most of mathematics occurs in the realm of Π^1_2-problems, for example:

- Riemann’s hypothesis,
- Poincaré’s conjecture,
- $P \neq NP$,
- Fermat’s last theorem,
Theorem (Shoenfield, 1961)

Assume ϕ is a Π^1_2-statement. If there is an uncountable transitive model M of ZFC such that $M \models \phi$, then ϕ holds in all transitive uncountable models of ZFC.

Most of mathematics occurs in the realm of Π^1_2-problems, for example:

- Riemann’s hypothesis,
- Poincaré’s conjecture,
- $P \neq NP$,
- Fermat’s last theorem,
- ...

In general differential and algebraic geometry are usually concerned with Π^1_2-problems, the same occurs for large portions of analysis and number theory.
Theorem (Shoenfield, 1961)

Assume ϕ is a Π^1_2-statement. If there is an uncountable transitive model M of ZFC such that $M \models \phi$, then ϕ holds in all transitive uncountable models of ZFC.

Most of mathematics occurs in the realm of Π^1_2-problems, for example:

- Riemann’s hypothesis,
- Poincaré’s conjecture,
- $P \neq \text{NP}$,
- Fermat’s last theorem,
- …

In general differential and algebraic geometry are usually concerned with Π^1_2-problems, the same occurs for large portions of analysis and number theory.

On the other hand non Π^1_2-problems may show up with more frequency in general topology, functional analysis, homological algebra, category theory…
Theorem (Baumgartner, 1984)

Assume there is a model of ZFC with a supercompact cardinal. Then there is a model of ZFC + PFA.
For every open and symmetric partition P of the plane \mathbb{R}^2 exactly one of the following holds:

1. There is an uncountable closed set C such that $C^2 \subseteq P$,
2. There is a countable family of closed sets C_n such that $\mathbb{R} = \bigcup_{n \in \mathbb{N}} C_n$ and $C_n^2 \cap P = \emptyset$ for all n.

is the Π^1_2-property

$$\forall P \phi(P) \rightarrow (\exists C \psi(P, C) \lor \exists \tilde{C} \theta(P, \tilde{C}))$$

where $\phi(P), \psi(P, C), \theta(P, \tilde{C})$ are the Δ^1_1-statements:
OCA∗

For every open and symmetric partition P of the plane \mathbb{R}^2 exactly one of the following holds:

1. There is an uncountable closed set C such that $C^2 \subseteq P$,
2. There is a countable family of closed sets C_n such that $\mathbb{R} = \bigcup_{n \in \mathbb{N}} C_n$ and $C_n^2 \cap P = \emptyset$ for all n.

is the Π^1_2-property

$$\forall P \phi(P) \rightarrow (\exists C \psi(P, C) \lor \exists \tilde{C} \theta(P, \tilde{C}))$$

where $\phi(P), \psi(P, C), \theta(P, \tilde{C})$ are the Δ^1_1-statements:

- $\phi(P) \equiv$
OCA*

For every open and symmetric partition P of the plane \mathbb{R}^2 exactly one of the following holds:

1. There is an uncountable closed set C such that $C^2 \subseteq P$,
2. There is a countable family of closed sets C_n such that $\mathbb{R} = \bigcup_{n \in \mathbb{N}} C_n$ and $C_n^2 \cap P = \emptyset$ for all n.

is the Π^1_2-property

$$\forall P \phi(P) \rightarrow (\exists C \psi(P, C) \lor \exists \tilde{C} \theta(P, \tilde{C}))$$

where $\phi(P), \psi(P, C), \theta(P, \tilde{C})$ are the Δ^1_1-statements:

- $\phi(P) \equiv P \subseteq \omega$ is a Borel code for an open and symmetric partition of the plane,
OCA*

For every open and symmetric partition P of the plane \mathbb{R}^2 exactly one of the following holds:

1. There is an uncountable closed set C such that $C^2 \subseteq P$,
2. There is a countable family of closed sets C_n such that $\mathbb{R} = \bigcup_{n \in \mathbb{N}} C_n$ and $C_n^2 \cap P = \emptyset$ for all n.

is the Π^1_2-property

$$\forall P \phi(P) \rightarrow (\exists C \psi(P, C) \lor \exists \tilde{C} \theta(P, \tilde{C}))$$

where $\phi(P), \psi(P, C), \theta(P, \tilde{C})$ are the Δ^1_1-statements:

- $\phi(P) \equiv P \subseteq \omega$ is a Borel code for an open and symmetric partition of the plane,
- $\psi(P, C) \equiv$
For every open and symmetric partition P of the plane \mathbb{R}^2 exactly one of the following holds:

1. There is an uncountable closed set C such that $C^2 \subseteq P$,
2. There is a countable family of closed sets C_n such that $\mathbb{R} = \bigcup_{n \in \mathbb{N}} C_n$ and $C_n^2 \cap P = \emptyset$ for all n.

is the Π^1_2-property

$$\forall P \phi(P) \rightarrow (\exists C \psi(P, C) \lor \exists \vec{C} \theta(P, \vec{C}))$$

where $\phi(P), \psi(P, C), \theta(P, \vec{C})$ are the Δ^1_1-statements:

- $\phi(P) \equiv P \subseteq \omega$ is a Borel code for an open and symmetric partition of the plane,
- $\psi(P, C) \equiv C^2 \subseteq \omega$ is Borel code for a closed uncountable "square" subset of the plane and
For every open and symmetric partition P of the plane \mathbb{R}^2 exactly one of the following holds:

1. There is an uncountable closed set C such that $C^2 \subseteq P$,
2. There is a countable family of closed sets C_n such that $\mathbb{R} = \bigcup_{n \in \mathbb{N}} C_n$ and $C_n^2 \cap P = \emptyset$ for all n.

is the Π^1_2-property

$$\forall P \phi(P) \rightarrow (\exists C \psi(P, C) \lor \exists \tilde{C} \theta(P, \tilde{C}))$$

where $\phi(P), \psi(P, C), \theta(P, \tilde{C})$ are the Δ^1_1-statements:

- $\phi(P) \equiv P \subseteq \omega$ is a Borel code for an open and symmetric partition of the plane,
- $\psi(P, C) \equiv C^2 \subseteq \omega$ is Borel code for a closed uncountable "square" subset of the plane and $\phi(P)$ and
OCA∗

For every open and symmetric partition P of the plane \mathbb{R}^2 exactly one of the following holds:

1. There is an uncountable closed set C such that $C^2 \subseteq P$,
2. There is a countable family of closed sets C_n such that $\mathbb{R} = \bigcup_{n \in \mathbb{N}} C_n$ and $C_n^2 \cap P = \emptyset$ for all n.

is the Π^1_2-property

$$\forall P \phi(P) \rightarrow (\exists C \psi(P, C) \lor \exists \tilde{C} \theta(P, \tilde{C}))$$

where $\phi(P), \psi(P, C), \theta(P, \tilde{C})$ are the Δ_1-statements:

- $\phi(P) \equiv P \subseteq \omega$ is a Borel code for an open and symmetric partition of the plane,
- $\psi(P, C) \equiv C^2 \subseteq \omega$ is Borel code for a closed uncountable "square" subset of the plane and $\phi(P)$ and the set Borel coded by C^2 is contained in the set Borel coded by P,
For every open and symmetric partition P of the plane \mathbb{R}^2 exactly one of the following holds:

1. There is an uncountable closed set C such that $C^2 \subseteq P$,
2. There is a countable family of closed sets C_n such that $\mathbb{R} = \bigcup_{n \in \mathbb{N}} C_n$ and $C_n^2 \cap P = \emptyset$ for all n.

is the Π^1_2-property

$$\forall P \phi(P) \rightarrow (\exists C \psi(P, C) \lor \exists \tilde{C} \theta(P, \tilde{C}))$$

where $\phi(P), \psi(P, C), \theta(P, \tilde{C})$ are the Δ^1_1-statements:

- $\phi(P) \equiv P \subseteq \omega$ is a Borel code for an open and symmetric partition of the plane,
- $\psi(P, C) \equiv C^2 \subseteq \omega$ is Borel code for a closed uncountable "square" subset of the plane and $\phi(P)$ and the set Borel coded by C^2 is contained in the set Borel coded by P,
- $\theta(P, (C_n^2 : n \in \omega)) \equiv \ldots$
"Platonistic" proof of the Corollary

If we assume a platonistic stand-point and accept large cardinals axioms, the corollary is an immediate consequence of the three theorems since:

1. By Baumgartner's theorem:
 If there is a supercompact cardinal, then we can "safely" assume that there is an uncountable transitive model M of PFA.

2. By Todorcevic's theorem:
 If PFA holds in M, then OCA* holds in M.

3. By Shoenfield's absoluteness:
 If OCA* holds in some transitive uncountable model M of ZFC, then it holds in all uncountable transitive models M of ZFC.

Thus OCA* is true.

A posteriori an "ordinary" proof of OCA* has been found.
"Platonistic" proof of the Corollary

If we assume a platonistic stand-point and accept large cardinals axioms, the corollary is an immediate consequence of the three theorems since:

1. By Baumgartner's theorem:
 If there is a supercompact cardinal, then we can "safely" assume that there is an uncountable transitive model M of PFA.

2. By Todorcevic's theorem:
 If PFA holds in M, then OCA* holds in M.

3. By Shoenfield's absoluteness:
 If OCA* holds in some transitive uncountable model M of ZFC, then it holds in all uncountable transitive models M of ZFC.

Thus OCA* is true. A posteriori an "ordinary" proof of OCA* has been found.
"Platonistic" proof of the Corollary

If we assume a platonistic stand-point and accept large cardinals axioms, the corollary is an immediate consequence of the three theorems since:

1. By Baumgartner’s theorem:
 If there is a supercompact cardinal, then we can "safely" assume that there is an uncountable transitive model M of PFA.

2. By Todorcevic’s theorem:
 If PFA holds in M, then OCA* holds in M.

3. By Shoenfield’s absoluteness:
 If OCA* holds in some transitive uncountable model M of ZFC, then it holds in all uncountable transitive models M of ZFC.

Thus OCA* is true.

A posteriori an "ordinary" proof of OCA* has been found.
If we assume a platonistic stand-point and accept large cardinals axioms, the corollary is an immediate consequence of the three theorems since:

1. By Baumgartner’s theorem: If there is a supercompact cardinal, then we can ”safely” assume that there is an uncountable transitive model M of PFA.

2. By Todorcevic’s theorem: If PFA holds in M, then OCA* holds in M.

Thus OCA* is true. A posteriori an “ordinary” proof of OCA* has been found.
"Platonistic" proof of the Corollary

If we assume a platonistic stand-point and accept large cardinals axioms, the corollary is an immediate consequence of the three theorems since:

1. By Baumgartner’s theorem:
 If there is a supercompact cardinal, then we can ”safely” assume that there is an uncountable transitive model M of PFA.

2. By Todorcevic’s theorem:
 If PFA holds in M, then OCA* holds in M.

3. By Shoenfield’s absoluteness:
 If OCA* holds in some transitive uncountable model M of ZFC, then it holds in all uncountable transitive models M of ZFC.
"Platonistic" proof of the Corollary

If we assume a platonistic stand-point and accept large cardinals axioms, the corollary is an immediate consequence of the three theorems since:

1. By Baumgartner’s theorem:
 If there is a supercompact cardinal, then we can "safely" assume that there is an uncountable transitive model M of PFA.

2. By Todorcevic’s theorem:
 If PFA holds in M, then OCA* holds in M.

3. By Shoenfield’s absoluteness:
 If OCA* holds in some transitive uncountable model M of ZFC, then it holds in all uncountable transitive models M of ZFC.

Thus OCA* is true.
"Platonistic" proof of the Corollary

If we assume a platonistic stand-point and accept large cardinals axioms, the corollary is an immediate consequence of the three theorems since:

1. By Baumgartner’s theorem:
 If there is a supercompact cardinal, then we can "safely" assume that there is an uncountable transitive model M of PFA.

2. By Todorcevic’s theorem:
 If PFA holds in M, then OCA* holds in M.

3. By Shoenfield’s absoluteness:
 If OCA* holds in some transitive uncountable model M of ZFC, then it holds in all uncountable transitive models M of ZFC.

Thus OCA* is true.

A posteriori an "ordinary" proof of OCA* has been found.
1. Forcing axioms.

2. Ω-logic and absoluteness

3. Large cardinals and forcing axioms
Forcing axioms solve problems!
Forcing axioms solve problems!

Take a mathematical problem which is likely to be independent of ZFC, then there are great hopes that PFA will decide it.
Some examples from cardinal arithmetic:

The continuum hypothesis CH:
\[2^{\aleph_0} = \aleph_1.\]

Theorem (Todorˇ cevi´ c-Veliˇ ckovi´ c (1992), many others and many proofs afterwards)
PFA \[\rightarrow\] \[2^{\aleph_0} = \aleph_2.\]
Some examples from cardinal arithmetic:

The continuum hypothesis CH:

\[2^{\aleph_0} = \aleph_1. \]
Some examples from cardinal arithmetic:

The continuum hypothesis CH:

\[2^{\aleph_0} = \aleph_1. \]

Theorem (Todorčević-Veličković (1992), many others and many proofs afterwards)

PFA \rightarrow 2^{\aleph_0} = \aleph_2.
The singular cardinal hypothesis SCH:

$$\forall \kappa (\kappa^{\text{cf}}(\kappa) = \kappa^+ + 2^{\text{cf}}(\kappa))$$
The singular cardinal hypothesis SCH:

\[\forall \kappa (\kappa^{\text{cf}}(\kappa) = \kappa^+ + 2^{\text{cf}}(\kappa)) \]

Theorem (V. (2006))

PFA → SCH
Some examples from general topology:

Souslin's Hypothesis SH:
There are no Souslin lines.

Theorem (Solovay-Tennenbaum (1971))
PFA \rightarrow SH (In fact, MA \rightarrow SH).

M. Viale (Torino)
Some examples from general topology:

Souslin’s Hypothesis SH:

There are no Souslin lines
Some examples from general topology:

Souslin’s Hypothesis SH:

There are no Souslin lines

Theorem (Solovay-Tennenbaum (1971))

PFA \rightarrow SH (In fact MA \rightarrow SH).
The S-space problem:

Is there a regular Hausdorff space which is hereditarily separable but not hereditarily Lindelöf?
The S-space problem:

Is there a regular Haussdorff space which is hereditarily separable but not hereditarily Lindelöf?

Theorem (Todorčević (1989))

Assume PFA. Then the answer is no.
The S-space problem:

Is there a regular Haussdorff space which is hereditarily separable but not hereditarily Lindelöf?

Theorem (Todorčević (1989))

Assume PFA. *Then the answer is no.*

The L-space problem:

Is there a regular Haussdorff space which is hereditarily Lindelöf but not hereditarily separable?
The S-space problem:

Is there a regular Haussdorff space which is hereditarily separable but not hereditarily Lindelöf?

Theorem (Todorčević (1989))

Assume PFA. Then the answer is no.

The L-space problem:

Is there a a regular Haussdorff space which is hereditarily Lindelöf but not hereditarily separable?

Theorem (Moore (2006))

Yes, there is.
The five element basis for the uncountable linear orders:

Theorem (Moore (2006), culminating the work of Baumgartner, Shelah, Todorˇ cevi´ c and others)
Assume PFA. Then there are five uncountable linear orders such that any other uncountable linear order contains an isomorphic copy of one of these five.
The five element basis for the uncountable linear orders:

Theorem (Moore (2006), culminating the work of Baumgartner, Shelah, Todorčević and others)

Assume PFA. Then there are five uncountable linear orders such that any other uncountable linear order contains an isomorphic copy of one of these five.
Examples from functional analysis and algebra:

- Whitehead's problem: Is every Whitehead group free?

 Theorem (Shelah (1974))
 \[\text{Assume PFA (MA suffices). Then there is a Whitehead group which is not free.} \]

- Is every automorphism of the Calkin algebra an inner automorphism?

 Theorem (Farah, 2011, culminating researches by himself, Shelah, Velić and many others)
 \[\text{Assume PFA. Then all automorphisms of the Calkin algebra are inner.} \]
Examples from functional analysis and algebra:

Whitehead’s problem: Is every Whitehead group free?
Examples from functional analysis and algebra:

Whitehead’s problem: Is every Whitehead group free?

Theorem (Shelah (1974))

Assume PFA (MA suffices). Then there is a Whitehead group which is not free.
Examples from functional analysis and algebra:

Whitehead’s problem: Is every Whitehead group free?

Theorem (Shelah (1974))

Assume PFA (MA suffices). Then there is a Whitehead group which is not free.

Is every automorphism of the Calkin algebra an inner automorphism?
Examples from functional analysis and algebra:

Whitehead’s problem: Is every Whitehead group free?

Theorem (Shelah (1974))

Assume \textit{PFA} (\textit{MA} suffices). Then there is a Whitehead group which is not free.

Is every automorphism of the Calkin algebra an inner automorphism?

Theorem (Farah, 2011, culminating researches by himself, Shelah, Veličković and many others)

Assume \textit{PFA}. Then all automorphisms of the Calkin algebra are inner.
How far can one transfer Shoenfield’s absoluteness result for Π^1_2-properties to more complex ones?
How far can one transfer Shoenfield’s absoluteness result for Π^1_2-properties to more complex ones?

Woodin has shown that this can be pushed very far.
How far can one transfer Shoenfield’s absoluteness result for Π^1_2-properties to more complex ones?

Woodin has shown that this can be pushed very far.
As of now there is essentially one efficient method to produce independence results in set theory: *Forcing.*
How far can one transfer Shoenfield’s absoluteness result for Π^1_2-properties to more complex ones?

Woodin has shown that this can be pushed very far.

As of now there is essentially one efficient method to produce independence results in set theory: *Forcing*.

Forcing is an algorithmic procedure which takes as inputs

- a model V of ZFC
- a boolean algebra $\mathbb{B} \in V$.

M. Viale (Torino)
How far can one transfer Shoenfield’s absoluteness result for Π^1_2-properties to more complex ones?

Woodin has shown that this can be pushed very far.

As of now there is essentially one efficient method to produce independence results in set theory: *Forcing*.

Forcing is an algorithmic procedure which takes as inputs

- a model V of ZFC
- a boolean algebra $B \in V$.

From these inputs the forcing method produce a new model V^B of ZFC.
How far can one transfer Shoenfield’s absoluteness result for Π^1_2-properties to more complex ones?

Woodin has shown that this can be pushed very far.
As of now there is essentially one efficient method to produce independence results in set theory: Forcing.

Forcing is an algorithmic procedure which takes as inputs

- a model V of ZFC
- a boolean algebra $B \in V$.

From these inputs the forcing method produce a new model V^B of ZFC.

Truth in V^B is "computable" and depends from the combinatorial properties of B and from the first order theory of V.
Ω-Logic.

Ω-logic is devised in order to make set theory resilient to the forcing method.

Definition

$V^{|\omega} = \Omega \phi$ iff $V^B | \omega = \phi$ for all complete Boolean algebras $B \in V$.

M. Viale (Torino)

Three aspects of Gödel's program

28th April 2011 Wien

22 / 31
Ω-Logic.

Ω-logic is devised in order to make set theory resilient to the forcing method.
Ω-Logic.

Ω-logic is devised in order to make set theory resilient to the forcing method.

Definition

\[\forall V |\models \phi \iff \forall V^B \models \phi \text{ for all complete Boolean algebras } B \in V. \]
Let ZFC^* stands for the theory

ZFC^+ there are class many measurable Woodin cardinals.
Let ZFC^* stands for the theory

ZFC^+ there are class many measurable Woodin cardinals.

Theorem (Woodin, late eighties (in print 1999))

Assume V is a transitive model of ZFC^*. Then for all complete Boolean algebras $\mathbb{B} \in V$ and all statements ϕ:

$$V \models _{\Omega} \phi \iff V^\mathbb{B} \models ("V \models _{\Omega} \phi")$$

If one is eager to accept large cardinal axioms as true, Ω-truth is absolute with respect to the forcing method.
Let ZFC\(^*\) stands for the theory

\[\text{ZFC+ there are class many measurable Woodin cardinals.} \]

Theorem (Woodin, late eighties (in print 1999))

Assume \(V \) is a transitive model of ZFC\(^*\). Then for all complete Boolean algebras \(\mathbb{B} \in V \) and all statements \(\phi \):

\[V \models \Omega \phi \iff V^\mathbb{B} \models ("V \models \Omega \phi") \]

If one is eager to accept large cardinal axioms as true, \(\Omega \)-truth is absolute with respect to the forcing method.
Theorem (Woodin, late eighties)

Assume ϕ is a Π^1_n-property. Then $\text{ZFC}^* \models \Omega \phi$ or $\text{ZFC}^* \models \Omega \neg \phi$.

More generally:

Theorem (Woodin, unpublished)

Assume ϕ is a mathematical statement such that $\text{ZFC} \vdash \"\phi$ is expressible as a Δ^2_1-property.\" Then $\text{ZFC}^* \models \Omega \phi$ or $\text{ZFC}^* \models \Omega \neg \phi$.

Theorem (Woodin, late eighties)

$\text{ZFC}^* \models \Omega \"L(P_{\omega1\text{Ord}}) \models \phi\"$ or $\text{ZFC}^* \models \Omega \"L(P_{\omega1\text{Ord}}) \models \neg \phi\"$.

In the presence of large cardinals any problem which can be formulated in the theory of $L(R)$ or even in the theory of $L(P_{\omega1\text{Ord}})$ cannot be shown independent with respect to ZFC^* using forcing.
Theorem (Woodin, late eighties)

Assume ϕ is a Π^1_n-property. Then $\text{ZFC}^* \models \Omega \phi$ or $\text{ZFC}^* \models \Omega \neg \phi$.

More generally:

Theorem (Woodin, unpublished)

Assume ϕ is a mathematical statement such that

$\text{ZFC} \vdash \text{“} \phi \text{ is expressible as a } \Delta^2_1\text{-property.}\text{”}$

Then $\text{ZFC}^* \models \Omega \phi$ or $\text{ZFC}^* \models \Omega \neg \phi$.
Theorem (Woodin, late eighties)

Assume ϕ is a Π^1_n-property. Then $\text{ZFC}^* \models \Omega \phi$ or $\text{ZFC}^* \models \Omega \neg \phi$.

More generally:

Theorem (Woodin, unpublished)

Assume ϕ is a mathematical statement such that

$$\text{ZFC} \vdash "\phi \text{ is expressible as a } \Delta^2_1\text{-property}."

Then $\text{ZFC}^* \models \Omega \phi$ or $\text{ZFC}^* \models \Omega \neg \phi$.

Theorem (Woodin, late eighties)

$\text{ZFC}^* \models \Omega "L(P_{\omega_1 \text{Ord}}) \models \phi"$ or $\text{ZFC}^* \models \Omega "L(P_{\omega_1 \text{Ord}}) \models \neg \phi"$.
Theorem (Woodin, late eighties)

Assume ϕ is a Π^1_n-property. Then $\text{ZFC}^* \models \Omega \phi$ or $\text{ZFC}^* \models \Omega \neg \phi$.

More generally:

Theorem (Woodin, unpublished)

Assume ϕ is a mathematical statement such that $\text{ZFC} \vdash \text{"}\phi \text{ is expressible as a } \Delta^2_1\text{-property.\"}$

Then $\text{ZFC}^* \models \Omega \phi$ or $\text{ZFC}^* \models \Omega \neg \phi$.

Theorem (Woodin, late eighties)

$\text{ZFC}^* \models \Omega \text{"}L(P_{\omega_1 \text{ Ord}}) \models \phi\text{"}$ or $\text{ZFC}^* \models \Omega \text{"}L(P_{\omega_1 \text{ Ord}}) \models \neg \phi\text{"}$.

In the presence of large cardinals any problem which can be formulated in the theory of $L(\mathbb{R})$ or even in the theory of $L(P_{\omega_1 \text{ Ord}})$ cannot be shown independent with respect to ZFC^* using forcing.
Why large cardinals settle the theory of $L(\mathbb{R})$?

Theorem (Martin, Steel (1988))

Assume ZFC^*. Then the axiom of determinacy AD holds in $L(\mathbb{R})$.

It is well known that any mathematical problem which is expressible as a Π_1^n-property has very high chances to be settled by AD.

For example:

Theorem

Assume AD. Then every set of reals has the Baire property and is either countable or contains a closed uncountable set.
Why large cardinals settle the theory of $L(\mathbb{R})$?

Theorem (Martin, Steel (1988))

Assume ZFC*. Then the axiom of determinacy AD holds in $L(\mathbb{R})$.

It is well known that any mathematical problem which is expressible as a Π^1_n-property has very high chances to be settled by AD. For example:

Theorem

Assume AD. Then every set of reals has the Baire property and is either countable or contains a closed uncountable set.
Why large cardinals settle the theory of $L(\mathbb{R})$?

Theorem (Martin, Steel (1988))

Assume ZFC^*. Then the axiom of determinacy AD holds in $L(\mathbb{R})$.

It is well known that any mathematical problem which is expressible as a Π^1_n-property has very high chances to be settled by AD.
Why large cardinals settle the theory of $L(\mathbb{R})$?

Theorem (Martin, Steel (1988))

Assume ZFC*. Then the axiom of determinacy AD holds in $L(\mathbb{R})$.

It is well known that any mathematical problem which is expressible as a Π^1_n-property has very high chances to be settled by AD. For example:

Theorem

Assume AD. Then every set of reals has the Baire property and is either countable or contains a closed uncountable set.
What about mathematical problems which are not Δ^2_1-expressible or cannot be properly formulated in $L(P_{\omega_1} \text{Ord})$?
What about mathematical problems which are not \(\Delta^2_1 \)-expressible or cannot be properly formulated in \(L(P_{\omega_1 \text{ Ord}}) \)?

The first such example is CH which is \(\Sigma^2_1 \) but not \(\Delta^2_1 \) if AC holds (AC fails in \(L(P_{\omega_1 \text{ Ord}}) \) assuming ZFC*).
What about mathematical problems which are not Δ^2_1-expressible or cannot be properly formulated in $L(P_{\omega_1 \text{ Ord}})$?

The first such example is CH which is Σ^2_1 but not Δ^2_1 if AC holds (AC fails in $L(P_{\omega_1 \text{ Ord}})$ assuming ZFC*). To settle CH, even in Ω-logic, large cardinals are not enough.

We need other axioms:
What about mathematical problems which are not Δ^2_1-expressible or cannot be properly formulated in $L(P_{\omega_1} \text{Ord})$?

The first such example is CH which is Σ^2_1 but not Δ^2_1 if AC holds (AC fails in $L(P_{\omega_1} \text{Ord})$ assuming ZFC*).
To settle CH, even in Ω-logic, large cardinals are not enough.

We need other axioms:

1. Generic large cardinals?
What about mathematical problems which are not Δ^2_1-expressible or cannot be properly formulated in $L(P_{\omega_1} \text{Ord})$?

The first such example is CH which is Σ^2_1 but not Δ^2_1 if AC holds (AC fails in $L(P_{\omega_1} \text{Ord})$ assuming ZFC*).

To settle CH, even in Ω-logic, large cardinals are not enough.

We need other axioms:

1. Generic large cardinals?
2. Forcing axioms?
3. Diamond or CH?
4. . . ?

We also need good criteria to accept them.
What about mathematical problems which are not Δ^2_1-expressible or cannot be properly formulated in $L(P_{\omega_1} \text{Ord})$?

The first such example is CH which is Σ^2_1 but not Δ^2_1 if AC holds (AC fails in $L(P_{\omega_1} \text{Ord})$ assuming ZFC*).

To settle CH, even in Ω-logic, large cardinals are not enough.

We need other axioms:

1. Generic large cardinals?
2. Forcing axioms?
3. Diamond or CH?
What about mathematical problems which are not Δ^2_1-expressible or cannot be properly formulated in $L(P_{\omega_1} \text{Ord})$?

The first such example is CH which is Σ^2_1 but not Δ^2_1 if AC holds (AC fails in $L(P_{\omega_1} \text{Ord})$ assuming ZFC*).

To settle CH, even in Ω-logic, large cardinals are not enough.

We need other axioms:

1. Generic large cardinals?
2. Forcing axioms?
3. Diamond or CH?
4. . . ?
What about mathematical problems which are not Δ^2_1-expressible or cannot be properly formulated in $L(P_{\omega_1} \text{Ord})$?

The first such example is CH which is Σ^2_1 but not Δ^2_1 if AC holds (AC fails in $L(P_{\omega_1} \text{Ord})$ assuming ZFC*).

To settle CH, even in Ω-logic, large cardinals are not enough.

We need other axioms:

1. Generic large cardinals?
2. Forcing axioms?
3. Diamond or CH?
4. . . . ?

We also need good criteria to accept them.
My research project focuses on the second option, forcing axioms.
My research project focuses on the second option, forcing axioms.

Problem

Assume PFA (or the strongest forcing axiom MM).
My research project focuses on the second option, forcing axioms.

Problem

Assume PFA (or the strongest forcing axiom MM).

- *Can we effectively compute the theory of $L(P_{\omega_2} \text{Ord})$?*
My research project focuses on the second option, forcing axioms.

Problem

Assume PFA (or the strongest forcing axiom MM).

- Can we effectively compute the theory of $L(P_{\omega_2} \text{Ord})$?
- For example: does $L(P_{\omega_2} \text{Ord}) \models \text{AC}$?
My research project focuses on the second option, forcing axioms.

Problem

Assume PFA (or the strongest forcing axiom MM).

- *Can we effectively compute the theory of* $L(P_{\omega_2} \text{Ord})$?*
- *For example: does* $L(P_{\omega_2} \text{Ord}) \models \text{AC}$?*
- *Is the theory of* $L(P_{\omega_2} \text{Ord})$ *invariant with respect to* Ω-logic?*
We have seen that large cardinals are crucial to introduce forcing axioms and to justify Ω-logic. To what extent the converse is true?
We have seen that large cardinals are crucial to introduce forcing axioms and to justify Ω-logic. To what extent the converse is true? The following is currently my favorite problem:
We have seen that large cardinals are crucial to introduce forcing axioms and to justify Ω-logic. To what extent the converse is true? The following is currently my favorite problem:

Problem

Assume PFA holds in a transitive model V. Is there a transitive inner model of V with a supercompact cardinal?
With Christoph Weiβ we have promising positive partial answers to this problem.
With Christoph Weiß we have promising positive partial answers to this problem. This is strictly related to Woodin’s search for a canonical inner model for a supercompact cardinal.
With Christoph Weiß we have promising positive partial answers to this problem. This is strictly related to Woodin’s search for a canonical inner model for a supercompact cardinal. It is plausible to conjecture that

There is a "canonical" inner model for a supercompact cardinal if and only if such a canonical model can be built assuming PFA.
The relevance of this problem is not only purely mathematical.
The relevance of this problem is not only purely mathematical. Currently the most convincing argument to justify forcing axioms is that they have fruitful mathematical consequences, so if not true, they are at least useful.
The relevance of this problem is not only purely mathematical. Currently the most convincing argument to justify forcing axioms is that they have fruitful mathematical consequences, so if not true, they are at least useful.

If it were possible to show that inner models for large cardinals are simply definable assuming strong forcing axioms this would give more ground to accept them as a reasonable strengthening of the notion of large cardinal or even as "generic large cardinals axioms".
THANK YOU FOR YOUR ATTENTION