Lightweight Implementations of Probabilistic Programming Languages via Transformational Compilation

David Wingate
wingated@mit.edu

Andreas Stuhlmueller
andreas@stuhlmueller.info

Noah Goodman
ngoodman@stanford.edu
Implementing Probabilistic Programming Languages Without the Agonizing Pain

David Wingate
wingated@mit.edu

Andreas Stuhlmueller
andreas@stuhlmueller.info

Noah Goodman
ngoodman@stanford.edu
Summary

Goal: Create probabilistic programming languages which help express complex probabilistic models

Observation: We would like to leverage existing language infrastructure (compilers, parallelization, profilers, debuggers, etc.)

Contribution: A method to help transform any language into a probabilistic programming language
Outline

• Introduction to Probabilistic Programming
• Lightweight Implementations of PPLs
• New Inference Options
Probabilistic Programming
The Big Idea

Use a programming language to express your model

1) Write down a function which makes random choices
2) Fix the output of the function (i.e., condition the model)
3) Reason about the random choices needed to produce the output (run the program backwards!)

Write a probability compiler / interpreter to perform inference
Distributions over Traces

Probabilistic programs define distributions by defining a distribution over possible execution traces

The distribution is fully specified by a generative procedure

function X = gmm()
 if (rand > 0.5)
 X = -0.2 + randn
 else
 X = 0.2 + 0.5*randn
 end;
return;

Complex distributions are crafted compositionally
function X = lda()

 K = 10;
 for k=1:K
 topics(k,:) = dirichlet(1, vocab_size);
 end;

 for d=1:num_docs
 topic_dist = dirichlet(1, K);
 for w=1:num_words(d)
 topic = multinomial(topic_dist);
 X{d}(w) = multinomial(topics(topic,:));
 end;
 end;

 return;
Nonparametric distributions are implemented with **stochastic memoization**

Idea:
Given a stochastic function g, a stochastic memoizer returns a new function f which treats g as a base measure.

Calls to f return a previous or a new value from g according to the **Dirichlet Process**.

```matlab
>> g = @randn;
>> f = dpmem( g, 1.0 );
>> f()
-1.2
>> f()
-0.8
>> f()
-1.2
>> f()
-1.2
```
Example: ((H)DP)MM

```
function X = dp_mixture_model()
    K = 3;
    mu = randn( 1, K );

    for i=1:100
        ind = randi( k );
        X(i) = mu( ind ) + randn;
    end;

    return;

function X = hdp_mixture_model()
    a = dpmem( 1.0, @randn );
    b = dpmem( 1.0, @a );

    for i=1:100
        X(i) = b() + randn;
    end;

    return;

function X = gaussian_mixture_model()
    K = 3;
    mu = randn( 1, K );

    for i=1:100
        ind = randi( k );
        X(i) = mu( ind ) + randn;
    end;

    return;
```

Easy! Fun!
function Y = induce_program(X)

 text_of_code = sample_pcfg();
 f = eval(text_of_code);

 for i=1:100
 Y(i) = f(X(i)) + randn;
 end;

 return;
Lightweight PPL Implementations
Inference

Goal: Perform inference in an arbitrary program

Approach: MCMC

Need: Proposals, scoring mechanisms

Therefore need: The ability to control program execution …without the agonizing pain.
function X = simple_model()

m = poissrnd();

for i=1:m
 X(i) = gammrnd();
end;

for i=m+1:2*m
 X(i) = randn();
end;

return;
Observation: Execution Trace

function X = simple_model()

m = poissrnd();

for i=1:m
X(i) = gammarnd();
end;

for i=m+1:2*m
X(i) = randn();
end;

return;

Random Choices Encountered

2 3.1 7.2 2.1 0.1
1 5.6 -1.1

Note: if two traces make all of the same choices, their execution paths will be the same!
This suggests the following approach:

1) Give every random choice a name
2) Rewrite code to make it deterministic
3) When a random choice is encountered, use its name to look up its value in a database of random values

We can control execution traces by manipulating values in the database!
MCMC over Execution Traces

With the database in hand, we can implement inference:

1) Given an execution trace
2) Propose changes to some variables
3) Update the trace, **reusing as much randomness as possible**
4) Score; accept/reject

Initialize: \[[ll, D] = \text{trace_update}(\emptyset) \]

Repeat forever:
- Select a random \(f_k \) via its name \(n \)
- Look up its current value \((t, x, l, \theta_{db}) = D(n)\).
- Propose a new value \(x' \sim \mathcal{N}_t(x, \theta_{db}) \)
- Compute \(F = \log \mathcal{H}_t(x' | x, \theta_{db}) \)
- Compute \(R = \log \mathcal{H}_t(x | x', \theta_{db}) \)
- Compute \(l' = \log p_t(x' | \theta_{db}) \)
- Let \(D' = D \)
- Set \(D'(n) = (t, x', l', \theta_{db}) \)
- \[[ll', D'] = \text{trace_update}(D') \]
- if \((\log(\text{rand}) < ll' - ll + R - F)\)
 // accept
 \[D = D' \]
 \[ll = ll' \]
 // clean out unused values from \(D \)
else
 // reject; discard \(D' \)
endif
end repeat;
But What Name?

How should we name random variables?

Idea: according to their structural position in the trace

function X = simple_model()

 m = poissrnd();

 for i=1:m
 X(i) = gammarnd();
 end;

 for i=m+1:2*m
 X(i) = randn();
 end;

 return;
How should we name random variables?

Idea: according to their structural position in the trace

function X = simple_model()
 m = poissrnd();
 for i=1:m
 X(i) = gammarnd();
 end;
 for i=m+1:2*m
 X(i) = randn();
 end;
 return;
But What Name?

How should we name random variables?

Idea: according to their structural position in the trace

```
function X = simple_model()
    m = poissrnd();
    for i=1:m
        X(i) = gammarnd();
    end;
    for i=m+1:2*m
        X(i) = randn();
    end;
    return;
```

Naive naming:

- **Trace 1** (m=3):
 - 1: poisson
 - 2, 3, 4: gamma
 - 5, 6, 7: gaussian

- **Trace 2** (m=2):
 - 1: poisson
 - 2, 3, 4, 5: gamma
Generating Names

Augment the transformed source with
additional name-generating code

<table>
<thead>
<tr>
<th>Imperative Naming Specification</th>
<th>Functional Naming Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Begin executing (f) with empty function, line, and loop stacks.</td>
<td></td>
</tr>
<tr>
<td>• When entering a new function,</td>
<td>• (A^{top}[E] = (\lambda (\text{addr}) \ A[E])\ '\text{(top)})</td>
</tr>
</tbody>
</table>
| • push a unique function id on the function stack. | \(A[(\lambda (i_{i=1}^{n}) \ E_{body})] = (\lambda (\text{addr} \cdot i_{i=1}^{n}) \ A[E_{body}]) \)
| • push a 0 on the line stack. | where \(S \) is a globally unique symbol. |
| • When moving to a new line | \(A[(\text{mem } E)] = (\lambda (\text{maddr } f) (\lambda (\text{addr} \cdot \text{args}) \)
| • increment the last value on the line stack. | \(\text{(apply } f \text{ (cons args maddr) args}))\) \text{ addr } A[E] \) |
| • When starting a loop | \(A[(\text{begin } i_{i=1}^{n})] = (\text{begin } A[E_i]_{i=1}^{n}) \) |
| • push a 0 on the loop stack. | \(A[(\text{letrec } ((i_1 E_1)_{i=1}^{n}) E_{body})] = (\text{letrec } ((i_1 A[E_i]_{i=1}^{n}) A[E_{body}]) \) |
| • When iterating through a loop | \(A[(\text{if } E_t \ E_c \ E_a)] = (\text{if } A[E_t] \ A[E_c] \ A[E_a]) \) |
| • increment the last value on the loop stack. | \(A[(\text{define } I \ E)] = (\text{define } I \ A[E]) \) |
| • When exiting a loop | \(A[(\text{quote } E)] = (\text{quote } E) \) |
| • pop the loop stack. | \(A[(E_{op} \ E_{i=1}^{n})] = (A[E_{op}] (\text{cons } S \text{ addr} A[E_i]_{i=1}^{n}) \) |
| • When exiting a function | \(A[E] = E, \text{ otherwise.} \) |
| • pop the function stack and the line stack. | |
Example: Geometric

```
(bEGIN
dEFINE GEOMETRIC
  (LAMBDA (P)
    (IF (FLIP P)
      1
      (+ 1 (GEOMETRIC P))))
(GEOMETRIC .7))
```

```
((LAMBDA (ADDR)
   (BEGIN
    (DEFINE GEOMETRIC
      (LAMBDA (ADDR P)
        (IF (FLIP (CONSP 'A1 ADDR P))
          1
          (+ (CONSP 'A2 ADDR P)
             1
             (GEOMETRIC (CONSP 'A3 ADDR P))))))
      (GEOMETRIC (CONSP 'A4 ADDR 0.7))))
  ,(TOP))
```
Minimal Interpretative Overhead

Can improve performance by leveraging native ecosystem

![Graphs showing performance comparison between Bher and MIT-Church](image)

Note: can also simplify implementations (Bher codebase is 1/10 the size of MIT-Church)
New Inference Options
Different Inference Options

The model is in **readable/executable format**
Can give the code a **non-standard interpretation**

For example:
- **automatic differentiation**
- program analysis to identify known efficient sub-structures
- **operator overloading**

Diseases (hidden)

Symptoms (observed)
Dynamic Dependency Analysis

Use **operator overloading** to **dynamically track** fine-grained dependencies

Construct a **good proposal** by **getting rid of the bad parts** of a big proposal

1) Propose lots of changes
2) Track dependency structure
3) Whittle away bad parts!
Dynamic Dependency Analysis

Use **operator overloading**
to **dynamically track** fine-grained dependencies

Construct a **good proposal**
by **getting rid of the bad parts** of a big proposal

Diseases (hidden)

Symptoms (observed)
Dynamic Dependency Analysis

Use **operator overloading**
to **dynamically track** fine-grained dependencies

Construct a **good proposal**
by **getting rid of the bad parts** of a big proposal

Diseases (hidden)

Symptoms (observed)
Example: mesh inference

function X = mesh_inference(base_mesh)
 mesh = base_mesh + randn(size(base_mesh));
 img = render(mesh);
 X = img + randn(size(img));
 return;
Summary

• A generic technique for implementing PPLs
 – Name random choices
 – Manipulate execution traces via a database of randomness
 – Structural naming conventions
 – Transformational compilation

• Basis for several language implementations
 – Functional: Bher
 – Imperative: Stochastic Matlab
 – New: pystoch

• Machine-readable models
 – suggests new options for analysis, inference
Thank you!
Stochastic Matlab

- An open-source project
- Sample-based inference
- Freely mix deterministic and stochastic functions
- Can use MEX files
- Some integration with GPU
- Integrated profiling / debugging / visualizations
A stochastic, generative process which induces a distribution over partitions

Properties:

An exchangeable, nonparametric distribution
Can identify dimensionality of data
Allows dimensionality to grow with new data (unbounded seating!)
Allows for parameter sharing
How do we specify a probabilistic model?

Currently: a combination of
The English text in the paper
Statistician’s notation
Graphical notation

But how do you clearly specify complex models?
Typical Design Cycle

Do math
- Construct a model
- Come up with equations
- Limited by what you think is tractable

Experiment and analyze
- Run Experiments
 - Is your model right?
 - Is your code right?
 - Is your data good?

Code up inference
- It’s different every time
- Does it match your math?
- Want to try 100 different algorithms?
- Hopefully, it’s right…
New Design Cycle

Code up your model

A precise specification
The compiler does the heavy lifting
Can try multiple inference algorithms (coded by experts!)

Experiment and analyze

Run Experiments
Is your model right?
Is your code right?
Is your data good?
function X = sample_sentences()
 for i=1:10
 X{i} = [NP() VP()];
 end;
return;

function X = NP()
 if (rand > 0.5)
 X = [DET() N()];
 else
 X = [DET() ADJ() N()];
 end;
return;

function X = N()
 nouns = { 'dog', 'cat', 'klein bottle' };
 i = randi(length(nouns));
 X = nouns{ i };
return;
function X = sample_sentences()
 dp_NP = dpmem(1.0, @NP());
 for i=1:10
 X{i} = [dp_NP() VP()];
 end;
 return;

function X = NP()
 if (rand > 0.5)
 X = [DET() N()];
 else
 X = [DET() ADJ() N()];
 end;
 return;

function X = N()
 nouns = { 'dog', 'cat', 'klein bottle' };
 i = randi(length(nouns));
 X = nouns{ i };
 return;