Reduction of Imitation Learning to No-Regret Online Learning

Stephane Ross
Joint work with Drew Bagnell & Geoff Gordon
Imitation Learning

Expert Demonstrations → Machine Learning Algorithm → Policy
Imitation Learning

• Many successes:
 – Legged locomotion [Ratliff 06]
 – Outdoor navigation [Silver 08]
 – Helicopter flight [Abbeel 07]
 – Car driving [Pomerleau 89]
 – etc...
Example Scenario
Learning to drive from demonstrations

Input:
Camera Image

Output:
Steering in [-1,1]

Policy

Hard left turn
Hard right turn
Supervised Training Procedure

Expert Trajectories

Learned Policy: \(\hat{\pi}_{\text{sup}} = \arg\min_{\pi \in \Pi} \mathbb{E}_{s \sim D(\pi^*)} [\ell(\pi, s, \pi^*(s))] \)

Dataset
Poor Performance in Practice
Mistakes Grows Quadratically in T!

$$J(\hat{\pi}_{\text{sup}}) \leq T^2 \varepsilon$$

Exp. # of mistakes over T steps

Avg. loss on $D(\pi^*)$

time steps

Reason: Doesn’t learn how to recover from errors!

[Ross 2010]
Reduction-Based Approach & Analysis

Hard Learning Problem

Easier Related Problem(s)

Performance: $f(\varepsilon)$

Performance: ε

Example: Cost-sensitive Multiclass classification to Binary classification [Beygelzimer 2005]
Previous Work: Forward Training

• Sequentially learn one policy/step

• # mistakes grows linearly:
 \[J(\pi_1:T) \leq T \varepsilon \]

• Impractical if T large

[Ross 2010]
Previous Work: SMILe

[Ross 2010]

• Learn stochastic policy, changing policy slowly
 \[\pi_n = \pi_{n-1} + \alpha_n(\pi'_n - \pi^*) \]
 \[\pi'_n \text{ trained to mimic } \pi^* \text{ under } D(\pi_{n-1}) \]
 \[\text{– Similar to SEARN [Daume 2009]} \]

• Near-linear bound:
 \[J(\pi) \leq O(T\log(T)\epsilon + 1) \]

• Stochasticity undesirable

[Diagram: Steering from expert]
DAgger: Dataset Aggregation

• Collect trajectories with expert π^*

Steering from expert
DAgger: Dataset Aggregation

• Collect trajectories with expert π^*

• Dataset $D_0 = \{(s, \pi^*(s))\}$

Steering from expert
DAgger: Dataset Aggregation

• Collect trajectories with expert π^*

• Dataset $D_0 = \{(s, \pi^*(s))\}$

• Train π_1 on D_0

Steering from expert
DAgger: Dataset Aggregation

• Collect new trajectories with π_1
DAgger: Dataset Aggregation

- Collect new trajectories with π_1

- New Dataset $D_1' = \{(s, \pi^*(s))\}$
DAgger: Dataset Aggregation

• Collect new trajectories with π_1

• New Dataset $D_1' = \{(s, \pi^*(s))\}$

• Aggregate Datasets:
 $D_1 = D_0 \cup D_1'$
DAgger: Dataset Aggregation

- Collect new trajectories with π_1

- New Dataset $D_1' = \{(s, \pi^*(s))\}$

- Aggregate Datasets:
 $D_1 = D_0 \cup D_1'$

- Train π_2 on D_1

Steering from expert
DAgger: Dataset Aggregation

- Collect new trajectories with π_2
- New Dataset $D_2' = \{(s, \pi^*(s))\}$
- Aggregate Datasets:
 $$D_2 = D_1 \cup D_2'$$
- Train π_3 on D_2
DAgger: Dataset Aggregation

- Collect new trajectories with π_n
- New Dataset $D_n' = \{(s, \pi^*(s))\}$
- Aggregate Datasets:
 $$D_n = D_{n-1} \cup D_n'$$
- Train π_{n+1} on D_n
Online Learning

Learner

Adversary
Online Learning

Learner

Current Hypothesis h_n

Adversary
Online Learning

Learner

Adversary

Current Hypothesis h_n

Pick Loss L_n
Online Learning

Learner

Adversary

Current Hypothesis h_n

Pick Loss L_n

Next Hypothesis h_{n+1}
Online Learning

Learner

Adversary

Current Hypothesis h_n

Pick Loss L_n

Next Hypothesis h_{n+1}

Pick Loss L_{n+1}
Online Learning

Learner

Adversary

Current Hypothesis h_n

Pick Loss L_n

Next Hypothesis h_{n+1}

Pick Loss L_{n+1}

Avg. Regret: $\gamma_n = \frac{1}{n} \left[\sum_{i=1}^{n} L_i(h_i) - \min_{h \in H} \sum_{i=1}^{n} L_i(h) \right]$
DAgger as Online Learning

Learner

Adversary

Current Policy π_n

Pick Loss L_n

Next Policy π_{n+1}

Pick Loss L_{n+1}

$$L_n(\pi) = \mathbb{E}_{s \sim D(\pi_n)} \left[\ell(\pi, s, \pi^*(s)) \right]$$
DAgger as Online Learning

\[\pi_{n+1} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{n} L_i(\pi) \]

\[L_n(\pi) = \mathbb{E}_{s \sim D(\pi_n)} [\ell(\pi, s, \pi^*(s))] \]
DAgger as Online Learning

\[\pi_{n+1} = \arg \min_{\pi \in \Pi} \sum_{i=1}^{n} L_i(\pi) \]

Follow-The-Leader (FTL)

\[L_n(\pi) = \mathbb{E}_{s \sim D(\pi_n)} [\ell(\pi, s, \pi^*(s))] \]
Theoretical Guarantees of DAgger

• Best policy π in sequence $\pi_{1:N}$ guarantees:

$$J(\pi) \leq T(\varepsilon_N + \gamma_N) + O(T/N)$$

Avg. Loss on Aggregate Dataset
Avg. Regret of $\pi_{1:N}$
Iterations of DAgger
Theoretical Guarantees of DAgger

- Best policy π in sequence $\pi_{1:N}$ guarantees:
 \[J(\pi) \leq T(\varepsilon_N + \gamma_N) + O(T/N) \]

- For strongly convex loss, $N = O(T \log T)$ iterations:
 \[J(\pi) \leq T\varepsilon_N + O(1) \]
Theoretical Guarantees of DAgger

- Best policy π in sequence $\pi_{1:N}$ guarantees:
 \[J(\pi) \leq T(\varepsilon_N + \gamma_N) + O(T/N) \]

- For strongly convex loss, $N = O(T \log T)$ iterations:
 \[J(\pi) \leq T \varepsilon_N + O(1) \]

- Any No-Regret algorithm has same guarantees
Theoretical Guarantees of DAgger

- If sample m trajectories at each iteration, w.p. $1-\delta$:

$$J(\pi) \leq T(\hat{e}_N + \gamma_N) + O(T \sqrt{\log(1/\delta) / \sqrt{Nm}})$$

Empirical Avg. Loss on Aggregate Dataset

Avg. Regret of $\pi_{1:N}$
Theoretical Guarantees of DAgger

• If sample \(m \) trajectories at each iteration, w.p. 1-\(\delta \):

\[
J(\pi) \leq T(\hat{\epsilon}_N + \gamma_N) + O(T\sqrt{\log(1/\delta)}/\sqrt{Nm})
\]

Empirical Avg. Loss on Aggregate Dataset

Avg. Regret of \(\pi_{1:N} \)

• For strongly convex loss, \(N = O(T^2\log(1/\delta)) \), \(m=1 \), w.p. 1-\(\delta \):

\[
J(\pi) \leq T\hat{\epsilon}_N + O(1)
\]
Experiments: 3D Racing Game

Input:
Resized to 25x19 pixels (1425 features)

Output:
Steering in [-1,1]
DAgger Test-Time Execution
Average Falls/Lap

![Graph showing the average falls per lap against the number of training data points. The graph compares different methods, including DAgger, SMILe(0.1), and Supervised, with error bars indicating variability. The x-axis represents the number of training data points, and the y-axis shows the average falls per lap. The graph illustrates that DAgger generally performs better than SMILe(0.1) and Supervised, especially as the number of training data points increases.]
Experiments: Super Mario Bros
From Mario AI competition 2009

Input:

Output:

Jump in \{0,1\}
Right in \{0,1\}
Left in \{0,1\}
Speed in \{0,1\}

Extracted 27K+ binary features from last 4 observations
(14 binary features for every cell)
Test-Time Execution

FPS: 24
Attempt: 1 of 1
Agent: Linear
Selected Actions:

RIGHT SPEED
Average Distance/Stage
Conclusion

• Take-Home Message
 – Simple iterative procedures can yield much better performance.

• Can also be applied for **Structured Prediction**:
 – NLP (e.g. Handwriting Recognition)
 – Computer Vision [Ross & al., CVPR 2011]

• Future Work:
 – Combining with other Imitation Learning techniques [Ratliff 06]
 – Potential extensions to Reinforcement Learning?
Questions
Structured Prediction

• Example: Scene Labeling

Image

Graph Structure over Labels
Structured Prediction

• Sequentially label each node using neighboring predictions
 – e.g. In Breath-First-Search Order (Forward & Backward passes)
Structured Prediction

• Input to Classifier:
 – Local image features in neighborhood of pixel
 – Current neighboring pixels’ labels

• Neighboring labels depend on classifier itself

• DAgger finds a classifier that does well at predicting pixel labels given the neighbors’ labels it itself generates during the labeling process.
Experiments: Handwriting Recognition

Input:

Image current letter:

Previous predicted letter:

Output:

Current letter in \{a,b,...,z\}