Using Personalized PageRank for Keyword Based Sensor Retrieval

Lorand Dali
Alexandra Moraru
Dunja Mladenić

Jožef Stefan Institute
Slovenia
Outline

- Motivation
- Problem Description
- Data Description
- System Architecture
- Search and Ranking
- Demo
- Conclusions
Motivation

Sensors are everywhere!

Source: M. Botts, G. Percivall, C. Reed, J. Davidson, OGC SWE: Overview And High Level Architecture
Motivation

Sensor Web – OGC Vision

- Web accessible sensor networks and archived sensor data that can be discovered and accessed using standard protocols and application program interfaces

- Sensors will be able to
 - report position
 - connected to the web
 - register metadata
 - be readable and controllable remotely

Source: M. Botts, G. Percivall, C. Reed, J. Davidson, OGC SWE: Overview And High Level Architecture
Motivation

- We want a way of doing sensing that can make the data available to any application that needs that specific data\(^1\)

- How do we search for these data?

\(^1\)John Cox, Turning the world into a sensor network, NetworkWorld, August 11, 2010.
Problem Description

- System for **keyword based sensor search**, apply the Personalized PageRank algorithm for **ranking**, and filtered results based on **geo-location**.

- **What is the water temperature in the costal region of Goa?**
 - What about wind, currents, air temperature?

- Search and ranking criteria:
 - Textual description extracted from sensor’s metadata
 - Sensors measuring same phenomena
 - Sensors located on the same platform
 - Sensors deployed in the same network
Data Description

- Sensors in the area of ocean tides and currents, defined by\(^1\):
 - networks
 - platforms
 - sensors
 - observed property

- Large number of standardized sensor descriptions
 - the representation format is SensorML, facilitating parsing and extraction of relevant metadata.
 - each sensor can observe one property (i.e. air temperature, water salinity, etc.) and is attached to one platform;
 - each platform is deployed in one network and can have one or more sensors attached.
 - each platform is given the latitude and longitude for its location.

\(^1\)Center for Operational Oceanographic Products and Services, http://tidesandcurrents.noaa.gov/index.shtml
System Architecture

- Sensor Descriptions (Text)
- Inverted Index
- Ranking Model (Personalized PageRank)
- Geo Filtering

Query
- keywords
- center of area of interest
- radius of area of interest
Search and Ranking

- The goal of the search
 - retrieve and rank a list of sensors based on the user’s request
- Input:
 - keyword query
 - geographic location (given by latitude and longitude coordinates)
 - distance (interpreted as a radius around the location)
- Output:
 - list of ranked sensors

- Text descriptions taken into consideration for keyword search:
 - platform, sensor and property **names**, given by system owners
 - standard name and definition of the **property observed**
 - From Climate and Forecast standard names parameter vocabulary. (MMI ontology)
 - sensor **description given by owner**
Search and Ranking

- **PageRank algorithm**
 - query independent ranking of web pages
 - from a directed graph => scores for each of the nodes
 - based on random walk model

- **Personalized PageRank**
 - Query dependent
 - subset Q of nodes matched by the keyword search are important a priori
 - constraint on the jumps in the random walk model
Search and Ranking

Equation for computing score:

\[p = d \cdot M \cdot p + (1 - d) \cdot u, \quad p, u \in \mathbb{R}^n, M \in \mathcal{M}(n) \]

- \(n \) is the number of nodes in the graph
- \(p \) is the PageRank vector containing the score for each node and is initialized with 0
- \(M \) is the transition matrix constructed in the following way:
 \[M[i,j] = \begin{cases}
 5, & \text{i and j measure the same thing} \\
 4, & \text{i and j are on the same platform} \\
 1, & \text{i and j are on the same deployment} \\
 0, & \text{otherwise}
 \end{cases} \]
- \(d \) is the damping parameter
- \(u \) is the jump vector and its entries are \(u[i] = \frac{1}{n}, \forall i \).
 - constraint: \(u[i] = \frac{1}{n} \) if \(i \in O \) and 0 otherwise.
Search and Ranking

- Geo-Filtering of search results
 - sensor scores are added to calculate platform scores
 - platform score is adjusted by dividing with it with the number of radiuses it is away from the location which the user has specified
 - Small radius => Very strict about location
Demo
Search Example

Search results

Galveston Pleasure Pier
Station information for Galveston Pleasure Pier (8771510). Observed data: WaterLevel, WaterLevelPredictions, Winds, AirTemperature, WaterTemperature, BarometricPressure.
- sensor-WaterLevel - WaterLevel instrument for station 8771510
- sensor-WaterLevelPredictions - WaterLevelPredictions instrument for station 8771510
- sensor-Winds - Winds instrument for station 8771510
- sensor-Winds - Winds instrument for station 8771510
- sensor-Winds - Winds instrument for station 8771510
- sensor-AirTemperature - AirTemperature instrument for station 8771510
- sensor-WaterTemperature - WaterTemperature instrument for station 8771510
- sensor-BarometricPressure - BarometricPressure instrument for station 8771510

Manchester
Station information for Manchester (8770777). Observed data: WaterLevel, WaterLevelPredictions, WaterTemperature.
- sensor-WaterLevel - WaterLevel instrument for station 8770777
- sensor-WaterLevelPredictions - WaterLevelPredictions instrument for station 8770777
- sensor-WaterTemperature - WaterTemperature instrument for station 8770777

Eagle Point
Station information for Eagle Point (8771013). Observed data: WaterLevel, WaterLevelPredictions, Winds, AirTemperature, WaterTemperature, BarometricPressure, Conductivity, Salinity.
- sensor-Waterlevel - WaterLevel instrument for station 8771013
- sensor-WaterLevelPredictions - WaterLevelPredictions instrument for station 8771013
- sensor-Winds - Winds instrument for station 8771013
- sensor-Winds - Winds instrument for station 8771013

Map data ©2010 Google, INEGI - Terms of Use
Performing the proposed ranking results in obtaining more platforms closer to the area of interest. We consider relevant also sensors located on the same platform or those that are in the same deployment.
Conclusions

- We need sensor search and ranking
- Personalized PageRank can be a solution to obtain the most relevant sensors

Future work
- Integrate more datasets
- Evaluation
 - Obtain relevance feedback data
 - Determine the parameters in an empirical way
- Considering measurements for search
THE END!