Theoretical analysis of Link Analysis Ranking

Panayiotis Tsaparas
University of Helsinki
HIIT-BRU
Link Analysis Ranking

- Link Analysis Ranking (LAR) algorithm:
 - Given a (directed) graph G, determine the importance of the nodes in the graph using the information of the edges (links) between the nodes.

- Intuition:
 - A link from node p to node q denotes endorsement. Node p considers node q an authority on a subject
 - Mine the graph of recommendations, assign an authority value to every page

- Applications:
 - Assess the importance of Web pages using link information.
 - Recommendation systems
Why theoretical analysis of Link Analysis Ranking?

- Plethora of LAR algorithms: we need a formal way to compare and analyze them
- Need to define properties that are useful
 - stability of the algorithm
- Axiomatic characterization of LAR algorithms
 - extension of social choice theory to recommendation systems
A LAR algorithm is a function that maps a graph to a real vector

\[A: G_n \rightarrow \mathbb{R}^n \]

- \(G_n \): class of graphs of size \(n \)
- LAR vector \(w \): the output \(A(G) \) of an algorithm \(A \) on a graph \(G \)
 - \(w_i \): the authority weight of node \(i \)
Popular LAR algorithms

- **InDegree algorithm**
 - \(w_i = \text{in-degree}(i) \)

- **PageRank algorithm** [BP98]
 - perform a random walk on \(G \) with random resets (with probability \(1-a \))
 - \(w = \text{stationary distribution of the random walk} \)

- **HITS algorithm** [K98]
 - compute the left (hub) and right (authority) singular vectors of the adjacency matrix \(W \)
 - \(w = \text{right singular vector} \)
Properties of Interest

- Stability
 - small changes in the graph should cause small changes in the output of the algorithm

- Similarity
 - the output of two algorithms are close

Under what conditions (for which classes of graphs) is an algorithm stable, or are two algorithms similar?

- Axiomatic characterizations
Distance between LAR vectors

- Geometric distance: how close are the numerical weights of vectors \(w_1, w_2 \)?

\[
d_2(w_1, w_2) = \sqrt{\sum |w_1[i] - w_2[i]|^2}
\]

- Assumption: Weights are normalized under norm \(L_2 \)
 - normalization makes a difference
Distance between LAR vectors

- Rank distance: how close are the **ordinal rankings** induced by the vectors w_1, w_2?
 - Kendal’s τ distance

\[
d_r(w_1, w_2) = \frac{\text{pairs ranked in a different order}}{\text{total number of distinct pairs}}
\]
Definition: **Link distance** between graphs $G = (P, E)$ and $G' = (P, E')$

$$d_\ell(G, G') = |E \cup E'| - |E \cap E'|$$

$$d_\ell(G, G') = 2$$
Stability

- $C_k(G)$: set of graphs G' such that $d_\ell(G, G') \leq k$

- Definition: Algorithm A is **stable** if for any fixed k

 $$\max_{G \in G_n} \max_{G' \in C_k(G)} d_2(A(G), A(G')) = o(1)$$

- Definition: Algorithm A is **rank stable** if for any fixed k

 $$\max_{G \in G_n} \max_{G' \in C_k(G)} d_r(A(G), A(G')) = o(1)$$
Stability: Results

- InDegree is \textcolor{blue}{(rank) stable} on G_n [BRRT05]
- HITS, PageRank, are \textcolor{orange}{(rank) unstable} on G_n
Perturbations of PageRank

- Perturbations to unimportant nodes have small effect on the PageRank values [NZJ01][BGS03]

\[d_1(A(G), A(G')) \leq \frac{2\alpha}{1 - 2\alpha} \sum_{i \in P} A(G)[i] \]

- Lee and Borodin 2003: PageRank is stable
 - HITS remains unstable
Instability of PageRank

- PageRank is unstable

- PageRank is rank unstable [Lempel Moran 2003]

- Open question: Can we derive conditions for the stability of PageRank in the general case?
Singular Value Decomposition

\[A = U \Sigma V^T = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_r \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_r \end{bmatrix} \]

- \(r \): rank of matrix \(A \)
- \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r \): singular values (square roots of eig vals \(AA^T, A^T A \))
- \(u_1, u_2, \cdots, u_r \): left singular vectors (eig-vectors of \(AA^T \))
- \(v_1, v_2, \cdots, v_r \): right singular vectors (eig-vectors of \(A^T A \))

\[A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \cdots + \sigma_r u_r v_r^T \]
Singular Value Decomposition

- **Linear trend** \(\mathbf{v} \) in matrix \(\mathbf{A} \):
 - the tendency of the row vectors of \(\mathbf{A} \) to align with vector \(\mathbf{v} \)
 - strength of the linear trend: \(\mathbf{A} \mathbf{v} \)
- SVD discovers the linear trends in the data
- \(\mathbf{u}_i \mathbf{v}_i^\top \): the i-th strongest linear trend
- \(\sigma_i \): the strength of the i-th strongest linear trend
- HITS ranks according to the **strongest linear trend** \(\mathbf{v}_i \) in the authority space
Instability of HITS

\[\sigma_2^2 \sigma_1 n n_{-1} n_{n+1} \sigma_2^2 \sigma_1 \]

\[a_0^2 = a_1 \]

\[a_2 = 0 \]

\[a_2 = 1 \]

Eigengap \(\sigma_1 - \sigma_2 = 1 \)
Stability of HITS

- **Theorem**: HITS is stable if
 \[\sigma_1(W) - \sigma_2(W) = \omega \] (1)

- The two strongest linear trends are well separated

- [Ng, Zheng, Jordan 2001]: HITS is stable if
 \[\sigma_1^2 - \sigma_2^2 = \omega \left(\sqrt{d_{\text{out}}} \right) \]
Similarity

- Definition: Two algorithms A_1, A_2 are similar if
 \[\max_{G \in G_n} d_2(A_1(G), A_2(G)) = \Theta(1) \]

- Definition: Two algorithms A_1, A_2 are rank similar if
 \[\max_{G \in G_n} d_r(A_1(G), A_2(G)) = o(1) \]

- Definition: Two algorithms A_1, A_2 are rank equivalent if
 \[\max_{G \in G_n} d_r(A_1(G), A_2(G)) = 0 \]
Similarity: Results

- No pairwise combination of InDegree, HITS, PageRank algorithms is similar, or rank similar on the class of all possible graphs G_n

- Can we get better results if we restrict ourselves to smaller classes of graphs?
 - We focus on similarity of HITS and InDegree algorithms [DLT05]
Product Graphs

- Latent authority and hub vectors a, h
 - $h_i =$ probability of node i being a good hub
 - $a_j =$ probability of node j being a good authority

- Generate a link $i \rightarrow j$ with probability $h_i a_j$
 $$W[i, j] = \begin{cases} 1 & \text{with probability } h_i a_j \\ 0 & \text{with probability } 1 - h_i a_j \end{cases}$$

- The class of product graphs G_n^p
 - (a.k.a. “graphs with given expected degree sequences”)
Product Graphs

\[W = M + R \]

- **M**: rank-1 matrix \(ha^T \)

\[\rightarrow \]

\[M = ha^T = \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_n \end{bmatrix} \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} h_1a_1 & h_1a_2 & \cdots & h_1a_n \\ h_2a_1 & h_2a_2 & \cdots & h_2a_n \\ \vdots & \vdots & \ddots & \vdots \\ h_na_1 & h_na_2 & \cdots & h_na_n \end{bmatrix} \]

- **R**: rounding

\[R[i, j] = \begin{cases} \text{a matrix} & \text{with probability } h_{i,j} \\ -h_{i,j} & \text{with probability } 1 - h_{i,j} \end{cases} \]
Product Graphs

- Idea [AFK+01]: View the product graph \(W = M + R \) as a perturbation of the rank-1 matrix \(M \) by the matrix \(R \)

- HITS and InDegree are identical on rank-1 matrix \(M \)

- How do the outputs change after perturbing \(M \) by \(R \)?
Theorem: HITS and InDegree are similar with high probability on the class of product graphs, G_{n^p} subject to some assumptions.

Assumption 1: \[\sigma_1(M) = \|h\|_2 \|a\|_2 = \omega(\sqrt{n}) \]

Assumption 2: Let \(H = \sum hi \) then \(H \|a\|_2 = \omega(\sqrt{n \log n}) \)

Assumptions 1 and 2 are general enough to include graphs with (expected) degrees that follow power law distribution with \(\alpha > 3 \)
Experiments with real web graphs

- Dataset: The Stanford WebBase project
- Correlation coefficient between authority and in-degree vector: 0.93
- Correlation coefficient between hub and out-degree vectors: 0.05

In-degree distribution

HITS authority values distribution
Monotonicity

- **Monotonicity**: Algorithm A is *strictly monotone* if for any nodes x and y

\[B_N(x) \subset B_N(y) \iff A(G)[x] < A(G)[y] \]

\[w_x < w_y \]
Locality: An algorithm A is **strictly rank local** if, for every pair of graphs $G=(P,E)$ and $G'=(P,E')$, and for every pair of nodes x and y, if $B_G(x)=B_{G'}(x)$ and $B_G(y)=B_{G'}(y)$ then

$$A(G)[x] < A(G)[y] \iff A(G')[x] < A(G')[y]$$

- The relative order of the nodes remains the same if their back links are not affected.

- The InDegree algorithm is strictly rank local.
Label Independence: An algorithm is label independent if a permutation of the labels of the nodes yields the same permutation of the weights.

- the weights assigned by the algorithm do not depend on the labels of the nodes.
Axiomatic characterization of the InDegree algorithm

- Theorem: Any algorithm that is strictly rank local, strictly monotone and label independent is rank equivalent to the InDegree algorithm

- All three properties are needed
Other work

- An axiomatic characterization of PageRank algorithm
 - “Ranking Systems: The PageRank axioms”
 Alon Altman, Moshe Tennenholtz, ACM Conference on Electronic Commerce, 2005
Open questions

- What is the necessary condition for the stability of the HITS algorithm?
 - can the results of [NZJ01] be proven for 0/1 matrices?
- Can we say anything about other LAR algorithms on product graphs?
 - e.g. PageRank
- Can we prove anything when we consider rank distance?
- Can we define other properties?
 - e.g., is spam sensitivity different from stability?
Thank you!