Toward Brain Computer Interfacing

Klaus-Robert Müller, Benjamin Blankertz, Carmen Vidaurre, Michael Tangermann, Gabriel Curio et al.
Noninvasive Brain-Computer Interface

BCI: Translation of human intentions into a technical control signal without using activity of muscles or peripheral nerves.
'Brain Pong' with BBCI
Noninvasive BCI: clinical applications

[From Birbaumer et al.]

[From Pfurtscheller et al.]
EEG based noninvasive BCI
The cerebral cocktail party problem

- use ICA/NGCA projections for artifact and noise removal
- feature extraction and selection

Towards imaginations: Modulation of Brain Rhythms

Most rhythms are idle rhythms, i.e., they are attenuated during activation.

- \(\alpha \)-rhythm (around 10 Hz) in visual cortex:

 ![Waveform](image)

 Single channel

- \(\mu \)-rhythm (around 10 Hz) in motor and sensory cortex:

 ![Waveform](image)
Variance I: Single-trial vs. Averaging

Time Courses at Electrode C4

- left avg
- foot avg
- left singles
- foot singles

Single channel
Variance II: Session to Session Variability

- Experiment: **One subject** imagined **left** vs. **right** hand movements on different days.
- Even though each ERD map represents an **average** across 140 trials, they exhibit an apparent diversity.
Variance III: inter subject variability [l vs r]
BCI with machine learning: training

- **calibration session**
 - supervised measurement
 - labeled trials
 - feature extraction

- **machine learning**
 - classifier

offline: calibration (10–20 minutes)

Collect training samples
BBCI paradigms

Leitmotiv: *let the machines learn*

- healthy subjects *untrained* for BCI

A: training 20min: right/left hand *imagined* movements
 → infer the respective brain activities (ML & SP)

B: online feedback session
BBCI paradigms

Leitmotiv: «let the machines learn»

- healthy subjects (BCI untrained) perform "imaginary" movements (ERD/ERS)

- instruction: imagine
 - squeezing a ball,
 - kicking a ball,
 - feel touch
Playing with BCI: training session (20 min)
Machine learning approach to BCI: infer prototypical pattern

Imagine left hand movements

Imagine right hand movements

Inference by CSP Algorithm
Common Spatial Pattern Analysis

Goal: Find spatial filters that optimally capture modulations of brain rhythms

Observation: power of a brain rhythm \sim variance of band-pass filtered signal.

- **unknown sources**
 - min variance for right
 - no class-specific influence on variance
 - min variance for left

- **observed signals**
 - V^{-1} projection
 - V filter

- **discriminative signals**
 - csp:$R1,2,...$
 - csp:$L1,2,...$

V^{-1} represents the projection step, and V represents the filter step.
EEG-signals during **motor imagery**, band-pass filtered (here 9–13 Hz):

\[
\begin{align*}
\Sigma_L & := X_L^T X_L \\
\Sigma_R & := X_R^T X_R
\end{align*}
\]

\[
V^T \Sigma_L V = D \quad \& \quad V^T (\Sigma_L + \Sigma_R) V = I
\]

→ choose eigenvector \(v_i \) from \(V \) that has a **large** eigenvalue \(d_i \) w.r.t. \(\Sigma_L \).

\[
\text{var}(X_L v_i) = d_i \quad \text{large} \\
\text{var}(X_R v_i) = 1 - d_i \quad \text{small}
\]
EEG-signals during **motor imagery**, band-pass filtered (here 9–13 Hz):

\[\Sigma_L := X_L^T X_L \]
\[\Sigma_R := X_R^T X_R \]

\[V^T \Sigma_L V = D \quad \& \quad V^T (\Sigma_L + \Sigma_R) V = I \]

→ choose eigenvector \(v_i \) from \(V \) that has a **small** eigenvalue \(d_i \) w.r.t. \(\Sigma_L \).

\[\var(X_L v_i) = d_i \text{ small} \]
\[\var(X_R v_i) = 1 - d_i \text{ large} \]
Common Spatial Patterns for 2 classes

Original data: Each class has a specific spatial extension. Let Σ_1 and Σ_2 be the covariance matrices of the two classes. The blue cross visualizes the covariance matrix of $\Sigma_1 + \Sigma_2$.

Make a whitening of $\Sigma_1 + \Sigma_2$, i.e., determine matrix P such that $P(\Sigma_1 + \Sigma_2)P^\top = I$ (possible due to positive definiteness of $\Sigma_1 + \Sigma_2$). ➤ Principal axis of the classes are perpendicular. Define: $\hat{\Sigma}_i = P\Sigma_iP^\top$.

Calculate orthogonal matrix R and diagonal matrix D by spectral theory such that $\hat{\Sigma}_1^\top = RDR^\top$. Therefore $\hat{\Sigma}_2^\top = R(1-D)R^\top$ since $\hat{\Sigma}_1 + \hat{\Sigma}_2 = I$. ➤ Variance along the axis of input space is complementary with respect to the two classes.

Essential idea for multi-class extension:
CSP is based on the simultaneous diagonalization of two covariance matrices with corresponding eigenvalues summing up to 1.

Distribution of EEG features
BBCI Set-up

multi-channel EEG → FFT based low-pass filter → band-pass 4-40 Hz -> AR coeffs. → subject-specific band-pass filter, e.g. 7-14Hz, -> multi-class CSP

Artifact removal

multiple feature extraction

$\text{min}_{w,b,\xi} \frac{1}{2} \|w\|_2^2 + \frac{C}{K} \|\xi\|_2^2$

subject to $y_k(w^T x_k + b) = 1 - \xi_k$ for $k = 1, \ldots, K$

BCI with machine learning: feedback

offline: calibration (10–20 minutes)
- Collect training samples

online: feedback (up to 6 hours)
- Classification of sliding windows (≤ 1 s)
Spelling with BBCI: a communication for the disabled I
Spelling with BBCI: a communication for the disabled II
Variance IV: covariate shift: from training to feedback

Need for adaptation!
Splitting into stationary and nonstationary subspace: SSA

- d stationary source signals $s^s(t) \in \mathbb{R}^d$
- $D - d$ non-stationary source signals $s^n(t) \in \mathbb{R}^{(D-d)}$
- Observed signals: instantaneous linear superpositions of sources

\[x(t) = As(t) = \begin{bmatrix} A^s & A^n \end{bmatrix} \begin{bmatrix} s^s(t) \\ s^n(t) \end{bmatrix} \]

[cf. Bünau, Meinecke, Kiraly, Müller PRL 09]
Splitting into stationary and nonstationary subspace: SSA II
Towards Application: Predicting drowsiness
Application: Cognitive workload and drowsyness assessment

Assess workload with BCI and balance it by smart driver assistent system

Assess cognitive alertness

[Kohlmorgen, Müller et al 2007]
Real Man Machine Interaction
Future issues: sensors

Popescu et al 2007
Future Issues: Shifting distributions within experiment
Conclusion

- BBCI: non-invasive with high Information transfer rates
- BBCI: Untrained, Calibration < 20min
- 5-8 letters/min mental typewriter on CeBit 06, Brain2Robot@Medica 07
- Machine Learning and modern data analysis are of central importance for BCI
- Applications: communication vs. measuring

Rehabilitation: TOBI EU IP, EU MUNDUS
Computational Neuroscience: Bernstein Centers Berlin
Man Machine Interaction: brain@work

- BBCI Sensors, software: IDA spinoffs
- towards no training, non-cooperative
- 'illiterates', nonstationarity, wireless

FOR INFORMATION SEE:
www.bbci.de
Thanks to BBCI core team:

Gabriel Curio
Florian Losch
Volker Kunzmann
Frederike Holefeld
Vadim Nikulin@Charite

Benjamin Blankertz
Michael Tangermann
Claudia Sannelli
Carmen Vidauorre
Siamac Fazli
Martijn Schreuter
Stefan Haufe
Thorsten Dickhaus
Frank Meinecke
Felix Biessmann@TUB

Florin Popescu
Andreas Ziehe
Steven Lemm
Motoaki Kawanabe
Guido Nolte@FIRST

Matthias Krauledat
Guido Dornhege
Roman Krepki@industry

Yakob Badower@Pico Imaging
Marton Danozci

Collaboration with: U Tübingen, Bremen, Albany, TU Graz, EPFL, Daimler, Siemens, MES, MPIs, U Tokyo, TIT, RIKEN, Bernstein Center for Computational Neuroscience Berlin, Columbia, CUNY
Funding by: EU, BMBF and DFG
Overview of BCI Competitions

<table>
<thead>
<tr>
<th>BCI competition I</th>
<th>BCI competition II</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 datasets</td>
<td>6 datasets</td>
</tr>
<tr>
<td>10 submissions</td>
<td>59 submissions</td>
</tr>
<tr>
<td>[Sajda et al., 2003]</td>
<td>[Blankertz et al., 2004]</td>
</tr>
</tbody>
</table>

BCI Competition III

- Dec 12th 2004 – May 31st 2005
- announcement of the results: between June 14th and 19th 2005
- 8 datasets from 5 different BCI groups with different tasks

For BCI IV Competition see www.bbcisi.de
Machine Learning open source software initiative: MLOSS see www.jmlr.org