The Music of the (p) Spheres

Alessandro Panconesi, La Sapienza of Rome

Joint work with: Prabakhar Raghavan, Mauro Sozio, Alessandro Tiberi, Eli Upfal

Nearest Neighbours
<table>
<thead>
<tr>
<th>Nearest Neighbour</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclidean distance</td>
<td></td>
</tr>
<tr>
<td>Cosine similarity</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random Clustering</th>
</tr>
</thead>
</table>

P-spheres
Once upon a time

- **Musica universalis** or **music of the spheres** is a medieval philosophical concept that regards the proportions in the movements of the celestial bodies - the Sun, Moon and planets - as a form of **musica**, the medieval Latin name for music. This music was not thought of as an audible sound, but simply as a mathematical concept. The Greek philosopher **Pythagoras** was frequently credited with originating the concept, which stemmed from his semi-mystical, semi-mathematical philosophy and its associated system of **numerology** of Pythagoreanism. Some Surat Shabda Yoga, Satgurus considered the music of the spheres to be a term synonymous with the Shabda or the Audible Life Stream in that tradition, because they considered **Pythagoras** to be a Satguru as well.
Rank Aggregation
Project docs on a random line

Project query: closest doc gets one vote
Repeat with a set of random lines

Elections
Evaluation

Competitive Recall
Competitive Recall

Competitive Recall
Competitive Similarity

$$AD(S,q) := \sum_{x \in D} x \cdot q / |D|$$

Average distance of q from S

Competitive Similarity

$$CS(S,q) := AD(S,q) / AD(Best,q)$$

We consider a normalised version of this..
The dataset

- 100,000 docs from CiteSeer
- \#dimensions = 400,000
- Normalized to unit vectors
- Words were stemmed and stopwords removed

What we measure

- Quality, ie recall and (normalized) competitive similarity
- Computational effort (machine independent)
- We tried long and short queries
Points of Interest

To the best of our knowledge, this is the 1st empirical study of p-spheres and rank aggregation for text data. These data are characterized by huge number of dimensions and very sparse vectors.

Random Clustering: 1 level of recursion is best
Random Clustering: Centroids are best

P-Spheres vs Random Clustering
Quality vs Computational Effort

Space: the Final Frontier
The Bottomline

<table>
<thead>
<tr>
<th>Random Clustering</th>
<th>P-spheres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space is optimal</td>
<td>Significant space blow-up</td>
</tr>
<tr>
<td>Full coverage of corpus</td>
<td>Partial coverage of corpus</td>
</tr>
<tr>
<td>Significantly better quality for same effort</td>
<td>Significantly lower quality for same effort</td>
</tr>
<tr>
<td>No a-priory knowledge required</td>
<td>A-priory knowledge of query distribution required</td>
</tr>
<tr>
<td>Extremely simple</td>
<td></td>
</tr>
</tbody>
</table>

Rank Aggregation
Rank Aggregation vs Random Clustering

Possible Explanation

Very sparse vectors, huge dimension (we had to bring the #dimensions from 400,000 to 60,000)

It works well for dense vectors

Sanity check: Approximation of Euclidean distance for our data same as that reported in original paper
Future Directions

• Simple randomized clustering seems to be remarkably effective
• We have an extremely cool generative model I did not have time to tell you about with which we can prove amazing things. To do: see how well it fits the data
• We are trying to improve random sampling by combining it with Rank Aggregation
• ..and to augment it with Pagerank

A Challenge

Does anybody know the origin of the word Yahoo! ?