Furniture scenario

Delocalisation with production networks to countries with cheaper human efforts, or skill competencies
Scenario

- Delocalisation is a fact that nowadays
 - cannot be avoided
 - suppliers and manufacturers moving their production networks
 - to countries with cheaper human efforts
 - To partners with skill competencies.
- E.g., Today there is no apparent reason for not having a Portuguese costumer ordering an Italian designed, Chinese manufactured piece of furniture in a Spanish e-marketplace or online retailer.
- E.g., Considering interior/exterior design/decoration of rooms and spaces
 - The huge number of potential combinations that can be addressed to fulfill the costumer/designer/user interest is of very large complexity
 - the number of regions that are able to manufacture, assembly, market the products and components, make this situation as combinatorial non-linear and very complex.
Challenges for the scenario

- This scenario brings globalization to a new level, however, nowadays for this to be feasible at a large scale some interoperability challenges need to be addressed:

 - Multilanguage and multimodal e-procurement
 - Advanced user-customization
 - Business information for product transaction and management fully integrated with the product data
 - Integrated logistics information
 - Optimized products development
• Multilanguage and multimodal e-procurement,

• i.e., depending on the region the furniture information as different semantics that need to be integrated for such an international scenario to be feasible
 • semantic interoperability;
• **Advanced user-customization**

• i.e., more and more the customer likes to experiment new part configurations and product combinations. However, most of the times that is not possible without having to wait more than a week for the response of the manufacturer/supplier
 • Interoperable electronic catalogues and parameterized information across the supply chain through the usage to product data standards;
• **Business information for product transaction and management fully integrated with the product data**

• , thus enabling seamless integration of ERP with e-commerce, supply chain management, and customer relationship management;
 • Standards harmonization (e-business + product data)
• Integrated logistics information

• to lower costs concerning the outsourcing of different product components and services.
 • Process monitoring and usage of standards
• **Optimized products development**

 • taking in consideration the sources from the different players, to better meet the users requests, with lower enterprise resources and costs.
Standards and the scenario

• The use of standards in the business relationships raises the confidence of sellers and buyers of the products and services, and increases performance.

• This boost of confidence means successful manufacturing networks promoting an enlargement of both the market size and growth rates.

• However, the increasing number of non-harmonized and non-interoperable standards put in the market may block or slow down growth and innovation associated with the presented scenario.
Standards and the scenario

- In this scenario ISO 10303-236 (AP236) standard covers part of the supply chain exchange of data among different stakeholders
 - but its implementation needs to be facilitated
 - Enterprise services for data and knowledge integration (AP236+domain ontology) are required.

- E-business, logistics and transport are still out of the scope of ISO 10303-236
 - but multiple standards exist.

- Therefore, there is the need to consider the signed Memorandum of Understanding for e-Business standards harmonization ensuring that interoperability possible.

- Also, extensions to cover cultural and language depending characteristics in enterprise business need to be integrated.
Benefits

• With all these aspects covered on the daily business transactions, the SME-based furniture sector will see tremendous benefits
Challenge

Delocalisation with production networks to countries with cheaper human efforts, or skill competencies.

So... 😊
Layers of a Standard-based Integration Platform
Standards Implementation

Translator

CONFORMANCE TESTING

APPLICATION PROTOCOL

SDAI - DM
Implementable DM High-Level Interface (I-DMI)
(set of DM1 objs) = MapFunct(set of DM2 objs)
(set of DM2 objs) = MapFunct(set of DM1 objs)

Rules

DM1–DM2 Mapping

SDAI - AP
Implementable AP High-Level Interface (I-API)

Rules

Syntax Checking

Structural Checking

Semantic Checking

App. Data Model (DM)
Application 1

Rules

Standards Implementation
Using.... Model Morphisms

- Relationships between two or more model specifications that can be represented in different technologies and languages
- Unary and binary operations that can be applied to models

Transformations
having $A \in MOD$, and a function $t: MOD \rightarrow MOD$, if $t(A) = B$, then $B \in MOD$
And... MDA Methodology

- Use of platform independent models (PIMs) as specification
- Transformation into platform specific models (PSMs) using automated tools
Transformation Framework

MDA – Abstraction level 3
(Set of object used to define a Metamodel)

MDA – Abstraction level 1 (Model)

XML DATA BINDING Tool

MDA – Abstraction level 2 (Metamodel)
Express2XMI mapping

```xml
SCHEMA Activity arm;

USE FROM Activity_method_arm;

TYPE activity_item = EXTENSIBLE GENERIC_ENTITY SELECT;
END_TYPE;

ENTITY Activity;
  id : STRING;
  name : STRING;
  description : OPTIONAL STRING;
  chosen_method : Activity_method;
END_ENTITY;

ENTITY Activity_relationship;
  name : STRING;
  description : OPTIONAL STRING;
  relating_activity : Activity;
  related_activity : Activity;
END_ENTITY;

ENTITY Activity_status;
  assigned_activity : Activity;
  status : STRING;
END_ENTITY;

ENTITY Applied_activity_assignment;
  assigned_activity : Activity;
  items : SET[1:*] OF activity_item;
  role : STRING;
END_ENTITY;

ENTITY Activity_method;
  name : STRING;
  description : OPTIONAL STRING;
  consequence : OPTIONAL STRING;
  purpose : STRING;
END_ENTITY;

END_SCHEMA; -- Activity_arm
```
Express2Schematron

ENTITY Product_Record_Information;
 RelatedTo: Product;
 supplierProductCode : OPTIONAL STRING;
 buyerProductCode : OPTIONAL STRING;
 quantity : NUMBER;
 requestedDeliveryDate : OPTIONAL date_or_date_time_select;
WHERE
 WR1: quantity > 0;
END_ENTITY;

<pattern name="Product_Record_Information - WHERE">
 <rule context="quantity">
 <assert test="current() > 0 or @ref">ERROR WR1 quantity > 0 SELF</assert>
 </rule>
</pattern>
Model Driven Approach

System 1

Importer/Exporter

Level M3 (Meta-meta-models)

is defined by

Level M2 (Meta-models)

PIMs and PSMs specifications

Level M1 (Models)

are described by

Data Instantiated

Transformation

System 2

Meta-meta-model

is defined by

Common Base

Type Mapping

Instances Mapping

Extends

Ricardo Jardim Gonçalves-UNINOVA
Framework instantiation
DWG to X3D Morphism (example)

Ricardo Jardim Gonçalves-UNINOVA
Integration with industrial e-commerce tool

CADEF, a tool to build product catalogues, has been integrated with the framework to enable access to visualization data for assistance in the manufacturer catalogue construction.
Furniture scenario

Delocalisation with production networks to countries with cheaper human efforts, or skill competencies

Thank you