Systematic decision making processes within Bridge Management System

CDV - Transport Research Centre (Czech Republic)
Division of Infrastructure and Environment

Dr. Josef Stryk
Content

- Introduction
- BMS basic structure
- BMS in European countries
- Supporting materials and tools
- Previous projects (European, American)
- Deliverable D09
 - Recommendation
 - Conclusions
Introduction

- **WP2:**
 Structural Assessment and Monitoring (TUC, Spain, J. R. Casas)

- **Task 2.4:**
 Systematic decision making processes associated with maintenance and reconstruction of bridges (CDV, Czech Republic, J. Stryk)

- **Deliverable D09:**
 August 2009
 Recommendation on systematic decision making ...

 - BMS in NMS
Bridge management system

- commercial / own system
- bridge-level / network-level

- condition & structure safety assessment of bridges
- information on costs & technologies
- decision on maintenance, repair, rehabilitation, strengthening and reconstructions
- prediction
- prioritization

- questionnaire (14)
- national reports (7)
<table>
<thead>
<tr>
<th>Country</th>
<th>Year of BMS starting</th>
<th>Prioritisation in BMS</th>
<th>No. of bridges managed</th>
<th>Used system/software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgaria</td>
<td>2004/2005</td>
<td>No</td>
<td>1.312</td>
<td>Scan print-Freissinet</td>
</tr>
<tr>
<td>Croatia **</td>
<td>developed now</td>
<td>Yes</td>
<td>800 on highways</td>
<td>Oracle 10.G</td>
</tr>
<tr>
<td>Czech republic</td>
<td>2002</td>
<td>Yes</td>
<td>20.490</td>
<td>IIS database + MS SQL Server</td>
</tr>
<tr>
<td>Estonia</td>
<td>2002</td>
<td>Yes</td>
<td>922</td>
<td>Pontis</td>
</tr>
<tr>
<td>France *</td>
<td>1999</td>
<td>No</td>
<td>9.000</td>
<td>own system</td>
</tr>
<tr>
<td>Germany *</td>
<td>2000/2001</td>
<td>Yes</td>
<td>38.000</td>
<td>SIB-Bauwerke; BMS-Optimisation-tools</td>
</tr>
<tr>
<td>Hungary</td>
<td>1996</td>
<td>Yes</td>
<td>6.000</td>
<td>adapted Pontis</td>
</tr>
<tr>
<td>Italy *</td>
<td>1986</td>
<td>Yes</td>
<td>3.626</td>
<td>Oracle, SQL server</td>
</tr>
<tr>
<td>Latvia</td>
<td>2002</td>
<td>Yes</td>
<td>1.775</td>
<td>LatBrutus</td>
</tr>
<tr>
<td>Serbia ***</td>
<td>1985</td>
<td>Yes</td>
<td>3.500</td>
<td>BPM</td>
</tr>
<tr>
<td>Slovakia</td>
<td>1998</td>
<td>Yes</td>
<td>7.664</td>
<td>Microsoft Access</td>
</tr>
<tr>
<td>Slovenia</td>
<td>1992</td>
<td>No</td>
<td>2.300</td>
<td>UNIX</td>
</tr>
<tr>
<td>UK</td>
<td>2001</td>
<td>Yes</td>
<td>8.600</td>
<td>Oracle</td>
</tr>
<tr>
<td>Ukraine ****</td>
<td>2006</td>
<td>Yes</td>
<td>2.203</td>
<td>Microsoft Sql Server, Borland Delphi</td>
</tr>
</tbody>
</table>

* former EU members, ** candidate country, *** potential candidate country, **** membership possible
Basic structure of BMS

ADMINISTRATION MODULE
- users
- groups of bridges
- general settings

INVENTORY MODULE
- bridge:
 - description
 - elements
 - documentation
 - current condition
 - current load capacity
 - current serviceability

INSPECTION MODULE
- different types of inspections, testing, monitoring and modeling
- results of survey
- suggestion for change of condition and structural safety state

MAINTENANCE MODULE
- required activities
- carried out activities
- cost of activities
 - work codebook
 - cost catalogue

PRIORITY MODULE
- predictions:
 - degradation (aging)
 - failure risk
 - traffic
- analysis:
 - life cycle cost analysis (LCCA)
 - cost benefit analysis (CBA)
- prioritization:
 - choosing the best strategy

deterioration models
budget

bridge (project) level

network level
Bridge level & network level

- **bridge level**
 - condition assessment - rating of elements or structure
 - safety assessment - load carrying capacity, safety factors
 - economical optimisation (LCCA)
 - measures/activities with their urgency

- **network level**
 - state, regional or other programs and priorities
 - social and environmental consequences
 - prioritization of activities within limited budget
 - bridge priority list
Supporting materials and tools

- **Deterioration models**
 - for the whole bridge / its elements
 - based on inspections, experience and prediction
 - creation of bridge categories
 - determination of residual lifespan

- **Catalogue of defects**
 - identification of potential origins
 - anticipation of further progression
 - measures and their urgency

- **Cost catalogue**
 - for appropriate estimation of future agency costs

- **Traffic grow models**
 - to evaluate future load and requirements
Determination of costs

- **Agency costs**
 - design, construction, inspection, maintenance and operation of a bridge, rehabilitation and replacement costs
 - known costs from realized activities
 - determined by qualified estimate

- **Road user costs**
 - time costs
 - vehicle operating costs
 - accident costs
 - from traffic delays
 - connected to traffic detours

- **Other costs**
 - vulnerability costs
 - third party costs
 - environmental costs
Bridge LCCA

- bridge level
 - planning horizon
 - different strategies
 - do nothing
 - MR&R (in more variants)
 - total reconstruction
 - calculation of costs
 - agency
 - user
 - other (vulnerability)
 - optimisation from economical point of view

- calculation of costs
 - agency
 - user
 - other (vulnerability)
BRIME decision system, 2000

Global **cost function** C:

$$C = C_C + C_I + C_M + C_R + C_F + C_U + C_O - V_S$$

- C_C: construction costs
- C_I: inspection costs
- C_M: maintenance costs
- C_R: repair costs
- C_F: failure (vulnerability) costs
- C_U: road user costs
- C_O: other costs
- V_S: salvage value of the bridge

Repair/replacement decision is made according to **repair index** RI of each alternative:

$$RI = \frac{(C_I + C_M + C_R + C_F + C_U + C_O - V_S)_{\text{Repair or replacement}}}{(C_I + C_M + C_F + C_U + C_O - V_S)_{\text{No action or reference alternative}}}$$
European and American projects

Bridge Management of Europe, **FP4, 1999**
www.trl.co.uk/brime/index.htm

Procedures required for the Assessment of Highway Structures, **COST, 2002**
http://cost345.zag.si/

Sustainable and Advanced MAterials for Road InfraStructure, **FP5, 2006**
http://samaris.zag.si/

Structural Assessment Monitoring and Control, **FP5, 2006**
http://www.samco.org

Bridge Life-Cycle Cost Analysis, **USA, 2003**

Multi-objective optimization for bridge management systems, **USA, 2007**
Deliverable D09

- Bridge management system
 - Structure of BMS
 - Supporting materials
 - Cost categories
 - Bridge life cycle cost analysis
 - Decision making processes within BMS

- State of the art
 - Literature review - reports
 - Literature review - conference paper
 - National reports (7 countries - CZ, SK, BG, LV, EE, IT, FR)
 - Questionnaire survey (14 countries)

- Recommendation on BMS & conclusions
Recommendation

- **Connection of BMS to current system**
 - based on current assessment processes used in the country
 - develop own system / buy commercial software
 - preferred usage of internet application

- **Structure of BMS**
 - the basic structure of the BMS should be as follows:
 - administration module
 - inventory module
 - inspection module:
 - condition assessment - condition rating
 - structure safety assessment - evaluated load carrying capacity
 - maintenance (financial) module:
 - determination of costs
 - prioritization (optimisation) module
Recommendation

- Decision making processes within BMS
 - bridge (project) level (LCCA) / network level (multicriterial analysis)
 - short-term planning and long-term planning
 - deterioration models & planning horizon & cost categories

- Asset management
 - connection of BMS with PMS, tunnel MS and management systems of other assets
BMS in the Czech Republic

Basic information are public through internet: http://bms.vars.cz

- inventory data
- description of substructure & superstructure
- condition & load carrying capacity
- schemes, documents
- inspections
- maintenance
- net present value (NPV)
- optimization module
- location (map)
Conclusions

- BMS is a basic tool for optimal planning of maintenance/repair/replacement of bridges.
- Most countries prefer usage of their own developed BMS or at least adjusted commercial BMS.
- BMS is useful even in case of limited resources for MR&R.
- For optimal BMS functionality you need enough correct data.
- The planning could be based on sufficient bridge assessment.
- Uncertainties in BMS processes should be minimised.
- The importance of other than agency costs on decision making process must be clarified.
- Each system is as good as people who work with it.
Thank you for your attention.

CDV - Transport Research Centre
(Czech Republic)
Division of Infrastructure and Environment

Dr. Josef Stryk