The Intelligent Cargo Concept in the European Project EURIDICE

Paolo Paganelli, Insiel spa, Italy
EURIDICE Project Coordinator
Content

• The EURIDICE vision and message
• What is Intelligent Cargo
• Architectural paradigm shift
• Pilot applications
The logistics industry

- Extreme fragmentation
 - Majority of SMEs, average turnover in EU: 430 k€ (src. EC DG TREN)
 - 80% road haulage goes to micro-companies (src. EUROSTAT)
 - Large players subcontracting most low-value activities.
- Labour intensive, low margins
 - 2.6 million workers in road freight transport (src. EC DG ENT)
 - Value-added per employee in EU: 33 k€ (src. EC DG TREN)
- Commodity vs. value-added service
 - Advanced services (4PL, intermodal) so far underdeveloped
 - SCM process and information mostly in the customer hands, i.e., the “cargo owner” (industry, distribution).
- Sustainability challenges
 - Trucks absorbing 35% of total road-fuel production with an expected increase to over 40% by 2030 (source “World Energy Outlook 2006”).
 - Transport-related CO2 emissions at 23% and rising.
- Regulatory pressures
 - The community pays for infrastructures (trucks account for 50% of motorway traffic)
 - Citizens suffer pressures on fuel prices, congestion in cities and road safety problems.
ICT for goods mobility today: Cutting-edge technologies for top demanding customers

Target: high value goods, with special requirements
(precious, dangerous, perishable, needed just-in-time, …)

What about goods that are neither precious nor special?
What services are needed by the majority of logistic users and operators?
What services are needed by the majority of logistic users and operators?

• A qualified answer: “nothing, thank you!”
• “Governments should stop wasting money in goods traceability projects: no one cares about that”
 President of Assologistica (Italian Association of Logistic companies)
 23/4/08, speech at Politecnico of Milano convention on Logistics in Port

• Why:
 • “Because operators already have all the data they really need.”
 • “Traceability across operators would force us to link our information system into a ‘system of systems’. costly and hardly achievable.”

Missing or misdirected value proposition

Faulty architectural approach

Overshooting: offer focused on top-demanding customers

Adoption barriers: unjustified cost and complexity for average users
“In five years time, most of the goods flowing through European freight corridors will be ‘intelligent’, i.e.: self-aware, context-aware and connected through a global telecommunication network to support a wide range of information services for logistic operators, industrial users and public authorities.”
From vision to adoption: Finding our own “elevator speech”

• “Pleased to meet you …”
 🎟️“In five years time, most of the goods flowing through European freight corridors will be ‘intelligent’, i.e.: self-aware, context-aware and connected through a global telecommunication network to support a wide range of information services for logistic operators, industrial users and public authorities.”
 🎟️“(we are building) a cargo centric information chain that offers automated end-to-end information about the logistic supply chain based on existing technologies and standards combined with intermediating trusted third parties.”

…

😊“We provide this product for these customers to achieve these benefits.”

1
2
3
1. The product

• We provide:
 • Information infrastructure / platform? (too vague)
 • Hardware / software tools / systems? (too limited)
 • (yet another) process / data integration platform? (not true)

“We provide cargo information services ..”
The customers: Who cares about the cargo being intelligent? → Who is target of our value proposition?

Strongly interested
Interested
Mildly interested
Neutral
Hostile

Cargo Owner (Manufacturer, Distributor) 3PL (Logistic Outsourcer) Authority Carrier Terminal Operator Shipping Agent
Value proposition pitfalls

• Some apparently good targets are hostile or neutral at best
 • Shipping agencies, terminal operators, carriers.
 • Misdirected value propositions can be found behind some past failures.
• Aiming at individual targets is not enough
 • The intelligent cargo concept, like other similar approaches, builds on cooperation between different actors.
 • Among the necessary actors some will find no value in the interchange, at least at the beginning (e.g., small carriers).
 • Other motivations/levers can be attempted to convince them, but a good business architecture should work by itself (frictionless).
• Importance of finding the right architectural approach
 • Maximize the value for those who care.
 • Minimize the burden for those who don’t care.
2. The customers

- Our customers:
 - Logistic companies
 - Cargo owners / shippers
 - Authorities / infrastructures ? (not customers, more providers / users)

“We provide cargo information services for logistic and industrial companies ..”
3. The benefits

• What is our value proposition?
 • Cargo-centric
 • Open (not proprietary), based on existing technologies and standards combined with intermediating trusted third parties
 • End-to-end information train
 • Option to use the EURIDICE architecture gradually, depending on the needs and available resources
 • …

• Need to translate this into user value
 → Blue Ocean “Value Innovation” approach
Disruptive innovation strategy: Aim at the largest pool of users ➔ remove barriers

- Technically possible innovation
- Disruptive innovation
- Innovation accepted by users

Performance / Functionality

- Functional improvements for top demanding customers
- Overshooting
- Disruption

Make basic functionality available to average customers by removing adoption barriers
The EURIDICE message

“We provide cargo information services for logistic and industrial companies that can be activated at low cost and work with any logistic partner along any transport route.”

Our mission:
“Providing cargo information services for all”
ICT for goods mobility tomorrow

Ad-hoc services combination

Basic services
- Identification
- Positioning
- Std. processes (bill of lading, proof of delivery, ...)

Advanced services
- Integration
- Authoring
- Orchestration

Enterprise Services / Third Party Services

Object Recognition and Positioning
Hosted European Service
ORPHEUS

Intelligent cargo = self-identifying, easy to interact and communicate with
What does “Intelligent Cargo” mean?

• The technological innovation dimension is not sufficient to define Intelligent Cargo.

 Smart tags, sensor networks, distributed intelligent agents, …

• Defining Intelligent Cargo requires a second dimension of architectural innovation, to highlight changes from the users perspective.

• EURIDICE list of intelligent cargo capabilities:

 • Cargo capable of autonomous decisions (intelligent agent),
 • Cargo capable to start processes (independent behavior),
 • Cargo capable to monitor and register its status,
 • Cargo capable to grant access to services (authorization, ETA estimation, data read/write, ..),
 • Cargo capable to detect its context (location, user, infrastructure, ..),
 • Cargo capable to identify itself.
Intelligent vs. “dumb” cargo, basic capabilities

<table>
<thead>
<tr>
<th>Capability</th>
<th>Dumb Cargo (state of the art)</th>
<th>Intelligent Cargo</th>
</tr>
</thead>
</table>
| **Self-identification** | • Local identification based on proprietary systems of each actor.
• Shared IDs through ad-hoc connection between back-office systems.
• Pre-fixed level of detail throughout the supply chain. | • Global identification provided by public domain services.
• Cargo is able to self-identify through a common infrastructure, accessible to field users, vehicles and back-office.
• Dynamically selected level of detail (package, pallet, container, ..). |
| **Context detection** | • No self-standing context detection capability.
• Context is extrapolated by back-office systems accessing other information sources (e.g., local ID repository). | • Context determination provided by public domain services.
• Common infrastructure, providing context data (identification details, location, time) to authorized users. |
| **Access to services** | • No direct access to services from the cargo itself.
• Services managed by proprietary systems of each actor or by generic (not cargo related) platforms. | • Common infrastructure, providing access to services to authorized users or systems interacting with the cargo. |
Intelligent vs. “dumb” cargo, specialized capabilities

<table>
<thead>
<tr>
<th>Capability</th>
<th>Dumb Cargo (state of the art)</th>
<th>Intelligent Cargo</th>
</tr>
</thead>
</table>
| Status monitoring and registering | • Sensing and data storing at a specific cargo level (e.g. container).
• To go beyond raw data, ad hoc back-office elaboration is needed. | • Status data are available in real time through the service infrastructure.
• Status data are contextualized and integrated with the other cargo information services. |
| Independent behavior | • No such capability. | • Cargo is able to invoke services and start processes autonomously in response to predefined events. |
| Autonomous decisions (Intelligent agent) | • No such capability. | • Cargo has decisions making capabilities and is able to choose services to invoke according to circumstances. |
Intelligent Cargo in practice

Cargo

- Self-identification
 - I am container (or package, or trailer, or..) X, I belong to Y

- Context detection
 - I am presently at location L, being handled by Z

- Status monitoring
 - I have been moving from here to there, I have been opened, my temperature has changed..
 - Owner service: content info, 3PL service: shipping info, Authority service: clearance info..
 - What's happening to our cargo?
 - Where are our goods, who is dealing with them?

- Services access
 - What’s this?

- Act independently

- Autonomous decisions
 - I am not where I was supposed to be, please take action
 - I am not where I was supposed to be, pick me up

User
Expected paradigm shift

<table>
<thead>
<tr>
<th></th>
<th>Current paradigm</th>
<th>Intelligent Cargo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data origin</td>
<td>User or back-office generated.</td>
<td>Item/sensor generated.</td>
</tr>
<tr>
<td>Interaction paradigm</td>
<td>Organization-to-organization</td>
<td>Thing-to-thing.</td>
</tr>
<tr>
<td>Data processing</td>
<td>Centralized at organization level.</td>
<td>Distributed, may start at object level.</td>
</tr>
<tr>
<td>Communication support</td>
<td>Predefined communication channels.</td>
<td>Self-configuring combination of local and global communication resources.</td>
</tr>
<tr>
<td>Data interchange semantics</td>
<td>Mutually agreed with each partner or between trade community members.</td>
<td>Globally established, for any-to-any ad hoc exchanges.</td>
</tr>
<tr>
<td>Decisions support</td>
<td>Top-down decision making, based on periodic data revision.</td>
<td>Event-triggered, decentralized and (partially) automated exception resolution.</td>
</tr>
</tbody>
</table>
Thing-to-thing vs. organization-to-organization

Thing-to-thing
- Connect via cargo objects interaction.
- Decentralized data processing.
- Owner systems may not be involved (only to access owner services).

Organization-to-organization
- Connect via pre-existing links between organizations.
- Cargo objects may not be involved (disconnected physical / information flows).
Event-triggered, decentralized decisions support

Intelligent cargo
- Automated event detection and context determination.
- Bottom-up exception resolution (escalation, consolidation of decisions).

Traditional approach
- Data consolidation from back-office systems.
- Top-down centralized monitoring, revision and communication.
Pilot Scenarios

Transport process

S1 Connected manufacturing and transport execution
S2 Active cold-chain control
S3 Cargo interacting with operators across hubs
S4 Real-time information to consignor and consignee
S5 Self-returning empty pallets and boxes
S6 Cargo-assisted inter-modal transport planning
S7 Intelligent routing through cargo-infrastructure cooperation
S8 Automated clearance and billing of transiting goods

Producer/Distributor

Infrastructure

Consignor

Operator

Authority

Consignee

Producer/Distributor

Infrastructure
Example: Scenario S1
Connected manufacturing and transport execution

Objective:
To increase synchronization between transportation and manufacturing processes, through:

- Inbound shipments self-updating their progress status, detecting deviations on the planned delivery and triggering changes to the production plan.
- Synchronized delivery of items that are part of a unique assembled final product, each item being aware of its dependencies and being able to alert the other components in case of deviations.

Test user: Safilo
Example: Scenario S7
Intelligent routing through cargo-infrastructure cooperation

Objective:
To avoid congestion and accidents and optimize utilization of road and parking infrastructures, through:

- automated re-routing performed by the cargo itself based on its planned and actual status, traffic and weather conditions, availability of parking areas;
- cooperation between cargo and infrastructure operator to acquire authorization and reserve parking space;
- self-diagnosis of anomalous events on the cargo (e.g., non-authorized movements in parking area) and automated triggering of the infrastructure security systems.

Test users:
SDAG,
Slovenian Motorways,
Autovie Venete
Thank you for your attention

http://www.euridice-project.eu

Paolo Paganelli
paolo.paganelli@insiel.it