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Bayesian paradigm

• Consistent use of probability theory for 
representing unknowns (parameters, 
latent variables, missing data)
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Bayesian paradigm

• Bayesian posterior distribution 
summarizes what we’ve learned from 
training data and prior knowledge

• Can use posterior to:• Can use posterior to:
– Describe training data
– Make predictions on test data
– Incorporate new data (online learning)

• Today’s question: How to efficiently 
represent and compute posteriors?
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Factor graphs

• Shows how a function of several variables 
can be factored into a product of simpler 
functions

• f(x,y,z) = (x+y)(y+z)(x+z)• f(x,y,z) = (x+y)(y+z)(x+z)
• Very useful for representing posteriors
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Example factor graph
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Two tasks

• Modeling
– What graph should I use for this data?

• Inference
– Given the graph and data, what is the mean – Given the graph and data, what is the mean 

of x (for example)?
– Algorithms: 

• Sampling
• Variable elimination
• Message-passing (Expectation Propagation, 

Variational Bayes, …)
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A (seemingly) intractable problemA (seemingly) intractable problem
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Clutter problem

• Want to estimate x given multiple y’s
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Exact posterior
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Representing posterior distributions

Sampling Deterministic approximation

Good for complex,
multi-modal distributions

Slow, but predictable accuracy

Good for simple, 
smooth distributions

Fast, but unpredictable accuracy10



Deterministic approximation

Laplace’s method
• Bayesian curve fitting, neural    
networks (MacKay)
• Bayesian PCA (Minka)

Variational bounds
• Bayesian mixture of experts (Waterhouse)
• Mixtures of PCA (Tipping, Bishop)
• Factorial/coupled Markov models 
(Ghahramani, Jordan, Williams)

11



Moment matching

Another way to perform
deterministic approximation
• Much higher accuracy on some 
problems

Expectation Propagation

Assumed-density filtering

Loopy belief propagation
(1997)

(1984)

(2001)
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Today

• Moment matching 
(Expectation Propagation)

Tomorrow

• Variational bounds 
(Variational Message Passing)
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Best Gaussian by moment 
matching
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Strategy

• Approximate each factor by a Gaussian in 
x
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Approximating a single factor
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Single factor with Gaussian context

19



Gaussian multiplication formula
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Approximation with narrow context
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Approximation with medium context
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Approximation with wide context
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Two factors

x

x

Message passing
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Three factors

x

x

Message passing
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Message Passing = 
Distributed Optimization

• Messages represent a simpler distribution � � � �
that approximates � � � �
– A distributed representation

• Message passing = optimizing � to fit �• Message passing = optimizing � to fit �
– � stands in for � when answering queries

• Choices:
– What type of distribution to construct (approximating 

family)
– What cost to minimize (divergence measure)
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• Write p as product of factors:

• Approximate factors one by one:

Distributed divergence minimization

• Approximate factors one by one:

• Multiply to get the approximation:
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Gaussian found by EP
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Other methods
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Accuracy

Posterior mean:
exact    = 1.64864
ep         = 1.64514
laplace = 1.61946
vb         = 1.61834vb         = 1.61834

Posterior variance:
exact    = 0.359673
ep         = 0.311474
laplace = 0.234616
vb         = 0.171155
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Cost vs. accuracy

20 points 200 points

Deterministic methods improve with more data (posterior is more Gaussian)
Sampling methods do not
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Censoring example

• Want to estimate x given multiple y’s
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Time series problemsTime series problems
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Example: Tracking

Guess the position of an object given noisy measurements

1y

4y

Object

1x
2x

3x

4x

2y

3y
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Factor graph

1x 2x 3x 4x

1y 2y 3y 4y

ttt �xx += - 1

noise+= tt xy

(random walk)e.g.

want distribution of x’s given y’s
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Approximate factor graph

1x 2x 3x 4x
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Splitting a pairwise factor

1x 2x

1x 2x
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Splitting in context

2x 3x

2x 3x
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Sweeping through the graph

1x 2x 3x 4x
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Sweeping through the graph

1x 2x 3x 4x
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Sweeping through the graph

1x 2x 3x 4x
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Sweeping through the graph

1x 2x 3x 4x
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Example: Poisson tracking

• yt is a Poisson-distributed integer with      
mean exp(xt)
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Poisson tracking model
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Factor graph
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1x 2x 3x 4x
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Approximating a measurement 
factor

1x

1y

1x
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Posterior for the last state
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EP for signal detection

• Wireless communication problem
• Transmitted signal =
• vary to encode each symbol 
• In complex numbers:
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Binary symbols, Gaussian noise

• Symbols are          and    
(in complex plane)

• Received signal 
• Optimal detection is easy in this case          

noise)sin( ++= fwtayt

11 =s 10 -=s

• Optimal detection is easy in this case          

ty

0s 1s
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Fading channel

• Channel systematically changes amplitude 
and phase:

• = transmitted symbol

noise+= ttt sxy

s• = transmitted symbol
• = channel multiplier (complex number)
• changes over timetx ty

0sxt

1sxt

tx
ts
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Differential detection

• Use last measurement to estimate state:

• State estimate is noisy – can we do 
better?

11 / --» ttt syx

better?

ty

1-- ty

1-ty
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Factor graph

y y y y

1s 2s 3s 4s

1y 2y
3y 4y

1x 2x 3x
4x

Channel dynamics are learned from training data (all 1’s)

Symbols can also be correlated (e.g. error-correcting code)
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Splitting a transition factor
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Splitting a measurement factor
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On-line implementation

• Iterate over the last d measurements
• Previous measurements act as prior

• Results comparable to particle filtering, but • Results comparable to particle filtering, but 
much faster
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Classification problemsClassification problems
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Spam filtering by linear separation

Spam

Not spam

Choose a boundary that will generalize to new data 63



Linear separation

Minimum training error
solution (Perceptron)

Too arbitrary – won’t generalize well 64



Linear separation

Maximum-margin 
solution (SVM)

Ignores information in the vertical direction 65



Linear separation

Bayesian 
solution
(via averaging)

Has a margin, and uses information in all dimensions66



Geometry of linear separation

Separator is any vector w such that:

0>i
Txw (class 1)

0<i
Txw (class 2)

1=w (sphere)1=w (sphere)

This set has an unusual shape
SVM: Optimize over it
Bayes: Average over it
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Performance on linear 
separation

EP Gaussian approximation to posterior
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Factor graph
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Computing moments
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Computing moments
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Time vs. accuracy

A typical run on the 3-point problem

Error = distance to true mean of w

Billiard = Monte Carlo sampling
(Herbrich et al, 2001)

Opper&Winther’s algorithms:

MF = mean-field theory

TAP = cavity method (equiv to Gaussian EP for this problem)
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Gaussian kernels

• Map data into high-dimensional space so 
that
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Bayesian model comparison

• Multiple models Mi with prior probabilities 
p(Mi)

• Posterior probabilities:

• For equal priors, models are compared 
using model evidence:
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Highest-probability kernel

75



Margin-maximizing kernel
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Bayesian feature selection

Synthetic data where 6 features are relevant (out of 20)

Bayes picks 6 Margin picks 13
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EP versus Monte Carlo

• Monte Carlo is general but expensive
– A sledgehammer

• EP exploits underlying simplicity of the 
problem (if it exists)problem (if it exists)

• Monte Carlo is still needed for complex 
problems (e.g. large isolated peaks)

• Trick is to know what problem you have
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Software for EP

• Bayes Point Machine toolbox 
http://research.microsoft.com/~minka/papers/ep/bpm/

• Sparse Online Gaussian Process toolbox
http://www.kyb.tuebingen.mpg.de/bs/people/csatol/ogp/index.html

• Infer.NET
http://research.microsoft.com/infernet
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Further reading

• EP bibliography  • EP bibliography  
http://research.microsoft.com/~minka/papers/ep/roadmap.html

• EP quick reference
http://research.microsoft.com/~minka/papers/ep/minka-ep-
quickref.pdf
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Tomorrow

• Variational Message Passing
• Divergence measures
• Comparisons to EP
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