Kernel Principal Component Ranking: Robust Ranking on Noisy Data

Evgeni Tsivtsivadze Botond Cseke Tom Heskes

Institute for Computing and Information Sciences, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
firstname.lastname@science.ru.nl
Presentation Outline

1. Motivation
2. Ranking Setting
3. KPCRank Algorithm
4. Experiments
Learning on Noisy Data

- Real world data is usually corrupted by noise (e.g. in bioinformatics, natural language processing, information retrieval, etc.)
Learning on Noisy Data

- Real world data is usually corrupted by noise (e.g. in bioinformatics, natural language processing, information retrieval, etc.)
- Learning on noisy data is a challenge: ML methods frequently use low-rank approximation of the data matrix
Learning on Noisy Data

- Real world data is usually corrupted by noise (e.g. in bioinformatics, natural language processing, information retrieval, etc.)
- Learning on noisy data is a challenge: ML methods frequently use low-rank approximation of the data matrix
- Any manifold learner or dimensionality reduction technique can be used for de-noising
Learning on Noisy Data

- Real world data is usually corrupted by noise (e.g. in bioinformatics, natural language processing, information retrieval, etc.)
- Learning on noisy data is a challenge: ML methods frequently use low-rank approximation of the data matrix
- Any manifold learner or dimensionality reduction technique can be used for de-noising
- Our algorithm is an extension of nonlinear principal component regression applicable to preference learning task
Learning to rank (total order is given over all data points)

- Applications - collaborative filtering in electronic commerce, protein ranking (e.g. RankProp: Protein Ranking by Network Propagation), parse ranking, etc.
- We aim to learn scoring function that is capable of ranking data points
- Several accepted settings for learning (ref. upcoming Preference Learning Book)
 - Object ranking
 - Label ranking
 - Instance ranking
KPCRank Algorithm

- Main idea: Create new feature space with reduced dimensionality (only most expressive features are preserved) and use the ranking algorithm in that space to learn noise insensitive ranking function.
KPCRank Algorithm

- Main idea: Create new feature space with reduced dimensionality (only most expressive features are preserved) and use the ranking algorithm in that space to learn noise insensitive ranking function
- KPCRank scales linearly with the number of data points in the training set and is equal to that of KPCR
KPCRank Algorithm

- Main idea: Create new feature space with reduced dimensionality (only most expressive features are preserved) and use the ranking algorithm in that space to learn noise insensitive ranking function
- KPCRank scales linearly with the number of data points in the training set and is equal to that of KPCR
- KPCRank regularizes by projecting data onto lower dimensional space (number of principal components is a model parameter)
KPCRank Algorithm

- Main idea: Create new feature space with reduced dimensionality (only most expressive features are preserved) and use the ranking algorithm in that space to learn noise insensitive ranking function
- KPCRank scales linearly with the number of data points in the training set and is equal to that of KPCR
- KPCRank regularizes by projecting data onto lower dimensional space (number of principal components is a model parameter)
- In conducted experiments KPCRank performs better than the baseline methods when learning to rank from data corrupted by noise
Dimensionality Reduction

Consider covariance matrix

\[C = \frac{1}{m} \sum_{i=1}^{m} \Phi(z_i)\Phi(z_i)^t = \frac{1}{m} \Phi(Z)\Phi(Z)^t \]

To find the first principal component we solve

\[Cv = \lambda v \]

The key observation: \(v = \sum_{i=1}^{m} a_i \Phi(z_i) \), therefore,

\[\frac{1}{m} Ka = \lambda a \]

\[\langle v^l, \Phi(z) \rangle = \frac{1}{\sqrt{m\lambda_l}} \sum_{i=1}^{m} a_i' \langle \Phi(z_i)\Phi(z) \rangle = \frac{1}{\sqrt{m\lambda_l}} \sum_{i=1}^{m} a_i' k(z_i, z) \]
KPCRank Algorithm

We start with the disagreement error:

\[
d(f, T) = \frac{1}{2} \sum_{i,j=1}^{m} W_{ij} \left| \text{sign}(s_i - s_j) - \text{sign}(f(z_i) - f(z_j)) \right|
\]

The least squares ranking objective is

\[
J(w) = (S - \Phi(Z^t w)^t L(S - \Phi(Z)^t w)
\]

and using projected data (reduced feature space) the objective can be rewritten as

\[
J(\bar{w}) = (S - \Phi(Z)^t V \bar{w})^t L(S - \Phi(Z)^t V \bar{w})
\]

Regularization is performed by selecting optimal number of principle components.
KPCRank Algorithm

We set the derivative to zero and solve with respect to \tilde{w}

$$
\tilde{w} = \bar{\Lambda}^{\frac{1}{2}} (\tilde{V}^t KLK \tilde{V})^{-1} \tilde{V}^t KLS
$$

Finally we obtain the predicted score of the unseen instance-label pair based on the first p principal components by

$$
f(z) = \sum_{l=1}^{p} \frac{1}{\sqrt{m\lambda_l}} \tilde{w}_l \sum_{j=1}^{m} a^l_j k(z_j, z)
$$

- Efficient selection of the optimal number of principal components
- Detailed computation complexity considerations
- Alternative approaches for reducing computational complexity (e.g. subset method)
Experiments

- Label ranking - Parse Ranking dataset
- Pairwise preference learning - Synthetic dataset based on sinc(x) function
- Baseline methods: Regularized least-squares, RankRLS, KPC regression, Probabilistic ranker.
Parse Ranking Dataset

<table>
<thead>
<tr>
<th>Method</th>
<th>Without noise</th>
<th>$\sigma = 0.5$</th>
<th>$\sigma = 1.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPCR</td>
<td>0.40</td>
<td>0.46</td>
<td>0.47</td>
</tr>
<tr>
<td>KPCRank</td>
<td>0.37</td>
<td>0.41</td>
<td>0.42</td>
</tr>
<tr>
<td>RLS</td>
<td>0.34</td>
<td>0.43</td>
<td>0.46</td>
</tr>
<tr>
<td>RankRLS</td>
<td>0.35</td>
<td>0.45</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Table: Comparison of the parse ranking performances of the KPCRank, KPCR, RLS, and RankRLS algorithms using a normalized version of the disagreement error as performance evaluation measure.
A Probabilistic Ranker

A probabilistic counterpart of the RankRLS algorithm would be regression with Gaussian noise and Gaussian processes prior. Given the score differences $w_{ij} = s_i - s_j$

$$p(w_{ij}|f(x_i), f(x_i), \nu) = N(w_{ij}|f(x_i) - f(x_j), 1/\nu).$$

Then the posterior distribution is

$$p(f|D, \nu, \theta) = \frac{1}{p(D|\nu, \theta)} \prod_{i,j=1}^{n} N(w_{ij}|f(x_i) - f(x_j), 1/\nu) N(f|0, K).$$

- The posterior distribution $p(f|w, \nu, \theta)$ is Gaussian, its mean and covariance matrix can be computed by solving a system of linear equations and inverting a matrix, respectively.
- Note that predictions obtained by the RankRLS algorithm correspond to the predicted mean values of the Gaussian process regression.
Sinc Dataset

We use sinc function

\[
sinc(x) = \frac{\sin(\pi x)}{\pi x},
\]

to generate the values used for creating magnitudes of pairwise preferences.

- We get 2000 equidistant points from the interval \([-4, 4]\)
- Sample 1000 for constructing the training pairs and 338 for constructing the test pairs
- From these pairs we randomly sample 379 used for the training and 48 for the testing

The magnitude of pairwise preference is calculated as

\[
w = sinc(x) - sinc(x').
\]
Figure: The \textit{sinc} function and the approximate posterior means of the f using the preference with magnitudes and KPCRank predictions
Thank you.