Bottom-Up Search and Transfer Learning in SRL

Raymond J. Mooney
University of Texas at Austin

with acknowledgements to
Lily Mihalkova Tuyen Huynh

and
Jesse Davis Pedro Domingos Stanley Kok
Complexity of SRL/ILP/MLG

• ILP/SRL/MLG models define very large, complex hypothesis spaces.

• Time complexity is intractable without effective search methods.

• Sample complexity is intractable without effective biases.
Structure Learning

• SRL models consist of two parts:
 – **Structure**: logical formulae, relational model, or graph structure
 – **Parameters**: weights, potentials, or probabilities.

• Parameter learning is easier and much more developed.

• Structure learning is more difficult and less well developed.
 – Structure is frequently specified manually
Bottom-Up Search and Transfer Learning

- Two effective methods for ameliorating time and sample complexity of SRL structure learning:
 - **Bottom-Up Search**: Directly use data to drive the formation of promising hypotheses.
 - **Transfer Learning**: Use knowledge previously acquired in related domains to drive the formation of promising hypotheses.
SRL Approaches

- SLPs (Muggleton, 1996)
- PRMs (Koller, 1999)
- BLPs (Kersting & De Raedt, 2001)
- RMNs (Taskar et al., 2002)
- MLNs (Richardson & Domingos, 2006)

Markov logic networks
Markov Logic Networks (MLNs)

• A logical KB is a set of **hard constraints** on the set of possible worlds

• An MLN is a set of **soft constraints**: When a world violates a formula, it becomes less probable, not impossible

• Give each formula a **weight**

(Higher weight ⇒ Stronger constraint)

\[
P(\text{world}) \propto \exp\left(\sum \text{weights of formulas it satisfies}\right)
\]
Sample MLN Clauses

Parent(X,Y) \land Male(Y) \Rightarrow Son(Y,X): \ 10^{10}
Parent(X,Y) \land Married(X,Z) \Rightarrow Parent(Z,Y): \ 10
LivesWith(X,Y) \land Male(X) \land Female(Y) \Rightarrow Married(X,Y): \ 1
MLN Probabilistic Model

• MLN is a **template** for constructing a Markov net
 – Ground literals correspond to nodes
 – Ground clauses correspond to cliques connecting the ground literals in the clause

• Probability of a world x:

\[
P(x) = \frac{1}{Z} \exp \left(\sum_i w_i n_i(x) \right)
\]

- Weight of formula i
- No. of true groundings of formula i in x
Alchemy

• Open-source package of MLN software provided by UW that includes:
 – Inference algorithms
 – Weight learning algorithms
 – Structure learning algorithm
 – Sample data sets

• All our software uses and extends Alchemy.
BOTTOM-UP SEARCH
Top-Down Search

Training Data

Generate Hypotheses

Test Hypotheses
Top-Down Search in SRL

- SRL typically uses top-down search:
 - Start with an empty theory.
 - Repeat until further refinements fail to improve fit:
 - Generate all possible refinements of current theory (e.g. adding all possible single literals to a clause).
 - Test each refined theory on the training data and pick ones that best improve fit.

- Results in a huge branching factor.
- Use greedy or beam search to control time complexity, subject to local maxima.
Bottom-Up Search
Bottom-Up Search

- Use data to directly drive the formation of a limited set of more promising hypotheses.
- Also known as:
 - Data Driven
 - Specific to General
History of Bottom-Up Search in ILP

- Inverse resolution and CIGOL (Muggleton & Buntine, 1988)
- LGG (Plotkin, 1970) and GOLEM (Muggleton & Feng, 1990)
Relational Path Finding
(Richards & Mooney, 1992)

• Learn definite clauses based on finding paths of relations connecting the arguments of positive examples of the target predicate.

\[
\text{Parent}(x,y) \land \text{Parent}(z,x) \land \text{Parent}(z,w) \Rightarrow \text{Uncle}(w,y)
\]

\[
\text{Parent}(x,y) \land \text{Parent}(z,x) \land \text{Parent}(z,w) \land \text{Male}(w) \Rightarrow \text{Uncle}(w,y)
\]
Relational Path Finding
(Richards & Mooney, 1992)

- Learn definite clauses based on finding paths of relations connecting the arguments of positive examples of the target predicate.

\[
\text{Parent}(x,y) \land \text{Parent}(z,x) \land \text{Parent}(z,w) \land \text{Married}(v,w) \Rightarrow \text{Uncle}(v,y) \\
\text{Parent}(x,y) \land \text{Parent}(z,x) \land \text{Parent}(z,w) \land \text{Married}(v,w) \land \text{Male}(v) \Rightarrow \text{Uncle}(w,y)
\]
Integrating Top-Down and Bottom-up in ILP: Hybrid Methods

- CHILLIN (Zelle, Mooney, and Konvisser, 1994)

- PROGOL (Muggleton, 1995) and ALEPH (Srinivasan, 2001)
Bottom-Up Search in SRL

- Not much use of bottom-up techniques in structure--leaning methods for SRL.
- Most algorithms influenced by Bayes net and Markov net structure learning algorithms that are primarily top-down.
- Many (American) researchers in SRL are not sufficiently familiar with previous relational learning work in ILP.
BUSL: Bottom-Up Structure Learner
(Mihalkova and Mooney, 2007)

- Bottom-up (actually hybrid) structure learning algorithm for MLNs.
- Exploits partial propositionalization driven by relational path-finding.
- Uses a Markov-net structure learner to build a Markov net template that constrains clause construction.
BUSL General Overview

• For each predicate P in the domain, do:
 – Construct a set of template nodes and use them to partially propositionalize the data.
 – Construct a Markov network template from the propositional data.
 – Form candidate clauses based on this template.

• Evaluate all candidate clauses on training data and keep the best ones
Template Nodes

- Contain conjunctions of one or more variablized literals that serve as clause building blocks.
- Constructed by looking for groups of true constant-sharing ground literals in the data and variablize them.
- Can be viewed as partial relational paths in the data.
Propositionalizing Data

Relational Data:

Actor(brando) Actor(pacino) Director(coppola) Actor(eastwood) Director(eastwood)
WorkedFor(brando, coppola) WorkedFor(pacino, coppola) WorkedFor(eastwood, eastwood)
Movie(godFather, brando) Movie(godFather, coppola)
Movie(godFather, pacino) Movie(millionDollar,eastwood)

<table>
<thead>
<tr>
<th>Current Predicate</th>
<th>Template Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor(A)</td>
<td>WkdFor(A,B)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Constructing the Markov Net Template

- Use an existing Markov network structure learner (Bromberg et al. 2006) to produce the Markov network template

<table>
<thead>
<tr>
<th>Actor(A)</th>
<th>WorkedFor(A,B)</th>
<th>Movie(C,A)</th>
<th>Director(A)</th>
<th>WorkedFor(H,A)</th>
<th>Movie(F,A)</th>
<th>WorkedFor(I,A)</th>
<th>Movie(F,G)</th>
<th>WorkedFor(I,D)</th>
<th>Movie(E,H)</th>
<th>WorkedFor(I,A)</th>
<th>Movie(J,I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Forming Clause Candidates

- Consider only candidates that comply with the cliques in the Markov network template.

\[\text{Movie}(C, A) \land \text{WorkedFor}(A, B) \Rightarrow \text{Actor}(A) \]
BUSL
Experiments
Data Sets

- **UW-CSE**
 - Data about members of the UW CSE department (Richardson & Domingos, 2006)
 - Predicates include Professor, Student, AdvisedBy, TaughtBy, Publication, etc.

- **IMDB**
 - Data about 20 movies
 - Predicates include Actor, Director, Movie, WorkedFor, Genre, etc.

- **WebKB**
 - Entity relations from the original WebKB domain (Craven et al. 1998)
 - Predicates include Faculty, Student, Project, CourseTA, etc.
Data Set Statistics

Data is organized as **mega-examples**

- Each mega-example contains information about a group of related entities.

- Mega-examples are independent and disconnected from each other.

<table>
<thead>
<tr>
<th>Data Set</th>
<th># Mega-Examples</th>
<th># Constants</th>
<th># Types</th>
<th># Predicates</th>
<th># True Gliterals</th>
<th>Total # Gliterals</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMDB</td>
<td>5</td>
<td>316</td>
<td>4</td>
<td>10</td>
<td>1,540</td>
<td>32,615</td>
</tr>
<tr>
<td>UW-CSE</td>
<td>5</td>
<td>1,323</td>
<td>9</td>
<td>15</td>
<td>2,673</td>
<td>678,899</td>
</tr>
<tr>
<td>WebKB</td>
<td>4</td>
<td>1,700</td>
<td>3</td>
<td>6</td>
<td>2,065</td>
<td>688,193</td>
</tr>
</tbody>
</table>
Methodology: Learning & Testing

- Generated learning curves using leave one mega-example out.
 - Each run keeps one mega-example for testing and trains on the remaining ones, provided one by one
 - Curves are averaged over all runs
- Evaluated learned MLN by performing inference for the literals of each predicate in turn, providing the rest as evidence, and averaging the results.
- Compared BUSL to top-down MLN structure learner (TDSL) (Kok & Domingos, 2005)
Methodology: Metrics
Kok & Domingos (2005)

• **CLL**: Conditional Log Likelihood
 – The log of the probability predicted by the model that a literal has the correct truth value given in the data.
 – Averaged over all test literals.

• **AUC-PR**: Area under the precision recall curve
 – Produce a PR curve by varying a probability threshold
 – Find area under that curve
Results: AUC-PR in IMDB

Learning Curves in IMDB Domain

AUC

Number of Mega Examples

TDSL

BUSL
Results: AUC-PR in UW-CSE

Learning Curves in UW-CSE Domain

- TDSL
- BUSL
- Hand-KB
Results: AUC-PR in WebKB
Results: Average Training Time

- IMDB
- UW-CSE
- WebKB

Data Set

Minutes

- TDSL
- BUSL
Discriminative MLN Learning with Hybrid ILP Methods (Huynh & Mooney, 2008)

- Discriminative learning assumes a particular target predicate is to be inferred given information using background predicates.
- Existing non-discriminative MLN structure learners did very poorly on several ILP benchmark problems in molecular biology.
- Use existing hybrid discriminative ILP methods (ALEPH) to learn candidate MLN clauses.
General Approach

Step 1

ILP
Clause Learner

Discriminative structure learning
(Generating candidate clauses)

Step 2

Discriminative weight learning
(Selecting good clauses)
Discriminative Structure Learning

- **Goal:** Learn the relations between background and target predicates.
- **Solution:** Use a variant of ALEPH (Srinivasan, 2001), called ALEPH++, to produce a larger set of candidate clauses.
Discriminative Weight Learning

- **Goal:** Learn weights for clauses that allow accurate prediction of the target predicate.
- **Solution:** Maximize CLL of target predicate on training data.
 - Use exact inference for non-recursive clauses instead of approximate inference
 - Use L_1-regularization instead of L_2-regularization to encourage zero-weight clauses
Data Sets

- ILP benchmark data sets comparing drugs for Alzheimer’s disease on four biochemical properties:
 - Inhibition of amine re-uptake
 - Low toxicity
 - High acetyl cholinesterase inhibition
 - Good reversal of scopolamine-induced memory

<table>
<thead>
<tr>
<th>Data set</th>
<th># Examples</th>
<th>% Pos. example</th>
<th>#Predicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer amine</td>
<td>686</td>
<td>50%</td>
<td>30</td>
</tr>
<tr>
<td>Alzheimer toxic</td>
<td>886</td>
<td>50%</td>
<td>30</td>
</tr>
<tr>
<td>Alzheimer acetyl</td>
<td>1326</td>
<td>50%</td>
<td>30</td>
</tr>
<tr>
<td>Alzheimer memory</td>
<td>642</td>
<td>50%</td>
<td>30</td>
</tr>
</tbody>
</table>
Results: Predictive Accuracy

![Bar chart showing average accuracy for Amine, Toxic, Acetyl, and Memory categories.

- Blue bars represent TDSL.
- Brown bars represent BUSL.
- Yellow bars represent ALEPH.
- Red bars represent ALEPH++ExactL1.

Amine category shows the highest average accuracy for ALEPH++ExactL1, followed by TDSL and ALEPH. BUSL has the lowest average accuracy in this category.

For the Toxic category, ALEPH++ExactL1 again has the highest average accuracy, with TDSL and ALEPH following closely. BUSL has the lowest average accuracy.

In the Acetyl category, ALEPH++ExactL1 leads with the highest average accuracy. TDSL and ALEPH follow, while BUSL has the lowest average.

Memory category shows ALEPH++ExactL1 with the highest average accuracy, followed by TDSL and ALEPH. BUSL again has the lowest average accuracy in this category.]

Average accuracy

Amine | Toxic | Acetyl | Memory

TDSL | BUSL | ALEPH | ALEPH++ExactL1
Results: Adding Collective Inference

Add an ∞-weight transitive clause to learned MLNs

\[\text{less_toxic}(a,b) \land \text{less_toxic}(b,c) \Rightarrow \text{less_toxic}(a,c). \]
Learning via Hypergraph Lifting (LHL)
(Kok & Domingos, 2009)

• New bottom-up approach to learning MLN structure.
• Fully exploits a non-discriminative version of relational pathfinding.
• Current best structure learner for MLNs.
• See the poster here!
LHL = Clustering + Relational Pathfinding

- LHL “lifts” hypergraph into more compact rep.
 - Jointly clusters nodes into higher-level concepts
 - Clusters hyperedges

- Traces paths in lifted hypergraph
LHL Algorithm

• LHL has **three** components:

 – **LiftGraph**: Lifts hypergraph by clustering

 – **FindPaths**: Finds paths in lifted hypergraph

 – **CreateMLN**: Creates clauses from paths, and adds good ones to MLN
Additional Dataset

- **Cora**
 - Citations to computer science papers
 - Papers, authors, titles, etc., and their relationships
 - 687,422 ground atoms; 42,558 true ones
LHL vs. BUSL vs. MSL
Area under Prec-Recall Curve

IMDB

UW-CSE

Cora
LHL vs. BUSL vs. MSL
Conditional Log-likelihood

IMDB

UW-CSE

Cora
LHL vs. NoPathFinding

IMDB

AUC

LHL

NoPath Finding

UW-CSE

AUC

LHL

NoPath Finding

CLL

LHL

NoPath Finding

CLL

LHL

NoPath Finding
TRANSFER LEARNING
Transfer Learning

- Most machine learning methods learn each new task from scratch, failing to utilize previously learned knowledge.
- Transfer learning concerns using knowledge acquired in a previous source task to facilitate learning in a related target task.
Transfer Learning Advantages

• Usually assume significant training data was available in the source domain but limited training data is available in the target domain.

• By exploiting knowledge from the source, learning in the target can be:
 – **More accurate**: Learned knowledge makes better predictions.
 – **Faster**: Training time is reduced.
Transfer Learning Curves

- Transfer learning increases accuracy in the target domain.
Recent Work on Transfer Learning

• Recent DARPA program on Transfer Learning (TL) has led to significant recent research in the area.

• Some work focuses on feature-vector classification.
 – Hierarchical Bayes (Yu et al., 2005; Lawrence & Platt, 2004)
 – Informative Bayesian Priors (Raina et al., 2005)
 – Boosting for transfer learning (Dai et al., 2007)
 – Structural Correspondence Learning (Blitzer et al., 2007)

• Some work focuses on Reinforcement Learning
 – Value-function transfer (Taylor & Stone, 2005; 2007)
 – Advice-based policy transfer (Torrey et al., 2005; 2007)
Prior Work in Transfer and Relational Learning

This page is intentionally left blank
Standard Machine Learning assumes examples are:

- **Independent** and **Identically Distributed**

SRL breaks the assumption that examples are independent (requires “collective classification”)

TL breaks the assumption that test examples are drawn from the same distribution as the training instances
MLN Transfer
(Mihalkova, Huynh, & Mooney, 2007)

- Given two multi-relational domains, such as:

Source:

- UW-CSE
 - Professor(A) Student(A)
 - Publication(T, A)
 - AdvisedBy(A, B)
 - ...

Target:

- IMDB
 - Director(A) Actor(A)
 - Movie(T, A)
 - WorkedFor(A, B)
 - ...

- Transfer a Markov logic network learned in the Source to the Target by:
 - Mapping the Source predicates to the Target
 - Revising the mapped knowledge
TAMAR
(Transfer via Automatic Mapping And Revision)

Publication(T,A) \land AdvisedBy(A,B) \rightarrow Publication(T,B)
(clause from UW-CSE)

Predicate Mapping:
Publication \Rightarrow Movie
AdvisedBy \Rightarrow WorkedFor

Publication(T,A) \land AdvisedBy(A,B) \rightarrow Publication(T,B)

Target (IMDB) Data

Movie(T,A) \land WorkedFor(A,B) \rightarrow Movie(T,B)

Movie(T,A) \land WorkedFor(A,B) \land Relative(A,B) \rightarrow Movie(T,B)
Predicate Mapping

- Each clause is mapped independently of the others.
- The algorithm considers all possible ways to map a clause such that:
 - Each predicate in the source clause is mapped to some target predicate.
 - Each argument type in the source is mapped to exactly one argument type in the target.
- Each mapped clause is evaluated by measuring its fit to the target data, and the most accurate mapping is kept.
Predicate Mapping Example

\[Publication(T, A) \land AdvisedBy(A, B) \Rightarrow Publication(T, B) \]

\[Publication(\text{title}, \text{person}) \quad \Rightarrow \quad Movie(\text{name}, \text{person}) \]

\[AdvisedBy(\text{person}, \text{person}) \quad \Rightarrow \quad WorkedFor(\text{person}, \text{person}) \]

Consistent Type Mapping:

- title \rightarrow name
- person \rightarrow person

\[Movie(T, A) \land WorkedFor(A, B) \Rightarrow Movie(T, B) \]
TAMAR
(Transfer via Automatic Mapping And Revision)

Publication(T,A) ∧ AdvisedBy(A,B) → Publication(T,B) (clause from UW-CSE)

Movie(T,A) ∧ WorkedFor(A,B) → Movie(T,B)

Publication(T,A) ∧ AdvisedBy(A,B) → Publication(T,B) (clause from UW-CSE)

Movie(T,A) ∧ WorkedFor(A,B) ∧ Relative(A,B) → Movie(T,B)
Transfer Learning as Revision

- Regard mapped source MLN as an approximate model for the target task that needs to be accurately and efficiently revised.
- Thus our general approach is similar to that taken by theory revision systems (FORTE, Richards & Mooney, 1995).
- Revisions are proposed in a bottom-up fashion.
R-TAMAR

Relational Data

Clause 1
Clause 2
Clause 3
Clause 4
Clause 5

Self-diagnosis

Too Long
Good
Too Short
Good
Too Long

Directed Beam Search

New clause discovery

New Candidate Clauses

New Clause 1
wt 0.1

New Clause 3
wt 0.5

New Clause 5
wt 1.3

New Clause 6
wt -0.2

New Clause 7
wt 1.7

Change in fit to training data
Structure Revisions

- Using directed beam search:
 - Literal deletions attempted only from clauses marked for shortening.
 - Literal additions attempted only for clauses marked for lengthening.

- Training is much faster since search space is constrained by:
 1. Limiting the clauses considered for updates.
 2. Restricting the type of updates allowed.
New Clause Discovery

- Uses Relational Pathfinding
Weight Revision

Publication(T,A) \land AdvisedBy(A,B) \rightarrow Publication(T,B)

Movie(T,A) \land WorkedFor(A,B) \rightarrow Movie(T,B)

Publication(T,A) \land AdvisedBy(A,B) \rightarrow Publication(T,B)

Movie(T,A) \land WorkedFor(A,B) \land Relative(A,B) \rightarrow Movie(T,B)

MLN Weight Training

0.8 \quad Movie(T,A) \land WorkedFor(A,B) \land Relative(A,B) \rightarrow Movie(T,B)
TAMAR
Experiments
Systems Compared

• **TAMAR**: Complete transfer system.
• **ScrTDSL**: Algorithm of *Kok & Domingos (2005)* learning from scratch.
• **TrTDSL**: Algorithm of *Kok & Domingos (2005)* performing transfer, using M-TAMAR to produce a mapping.
Manually Developed Source KB

- UW-KB is a hand-built knowledge base (set of clauses) for the UW-CSE domain.
- When used as a source domain, transfer learning is a form of theory refinement that also includes mapping to a new domain with a different representation.
Metrics to Summarize Curves

• Transfer Ratio (Cohen et al. 2007)

\[
\text{Transfer Ratio} = \frac{\text{Area under learning curve of transfer learner}}{\text{Area under learning curve of learner from scratch}}
\]

– Gives overall idea of improvement achieved over learning from scratch
Transfer Scenarios

• Source/target pairs tested:
 – WebKB ⇒ IMDB
 – UW-CSE ⇒ IMDB
 – UW-KB ⇒ IMDB
 – WebKB ⇒ UW-CSE
 – IMDB ⇒ UW-CSE

• WebKB not used as a target since one mega-example is sufficient to learn an accurate theory for its limited predicate set.
AUC Transfer Ratio

Positive Transfer

Negative Transfer

Experiment

WebKB to IMDB UW-CSE to IMDB UW-KB to IMDB WebKB to UW-CSE IMDB to UW-CSE

TrTDSL TAMAR
CLL Transfer Ratio

Experiments

Positive Transfer

Negative Transfer

Experiments
Sample Learning Curve

Learning Curves in IMDB Domain (transfer is from UW-CSE)
Total Training Time in Minutes

Experiment

- WebKB to IMDB
- UW-CSE to IMDB
- UW-KB to IMDB
- WebKB to UW-CSE
- IMDB to UW-CSE

Chart showing the total training time in minutes for different experiments, with bars representing SrcTDSL, TrTDSL, and TAMAR.
Transfer Learning with Minimal Target Data
(Mihalkova & Mooney, 2009)

- Recently extended TAMAR to learn with extremely little target data.
- Just use minimal target data to determine a good predicate mapping from the source.
- Transfer mapped clauses without revision or weight learning.
Assume knowledge of only a few entities, in the extreme case just one.

Predicates/relations:
- written-by (doc, person)
- advised-by(person, person)
SR2LR Basic Idea
(Short Range to Long Range)

- Clauses can be divided into two categories
 - **Short-range**: concern information about a single entity
 \[\text{advised-by}(a, b) \Rightarrow \neg \text{is-professor}(a) \]
 - **Long-range**: relate information about multiple entities
 \[\text{written-by}(m, a) \land \text{written-by}(m, b) \land \text{is-professor}(b) \Rightarrow \text{advised-by}(a, b) \]

- Key:
 - Discover useful ways of mapping source predicates to the target domain by testing them only on short-range clauses
 - Then apply them to the long-range clauses
Results for Single Entity Training Data in IMBD Target Domain

Transfer Experiment

AUC PR

SR2LR
mTAMAR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

WebKB to IMDB
UW-CSE to IMDB
UW-KB to IMDB
Deep Transfer with 2^{nd}-Order MLNs
(Davis & Domingos, 2009)

- Transfer very abstract patterns between disparate domains.

- Learn patterns in 2^{nd}-order logic that variablize over predicates.
Deep Transfer
Generalizing to Very Different Domains

Source Domain
- Web Page
 - Linked to
 - Web Page
 - Linked to
 - Professor
 - Research Project

Target Domain
- Protein 1
 - Interacts with
 - Protein 2
 - Function 2
 - Function 3
Deep Transfer via Markov Logic (DTM)

- **Representation:** 2nd-order formulas
 - Abstract away predicate names
 - Discern high-level structural regularities
- **Search:** Find good 2nd-order formulas
- **Evaluation:** Check if 2nd-order formula captures a regularity beyond product of sub-formulas
- **Transfer:** Knowledge provides declarative bias in the target domain
Datasets

- **Yeast Protein** (Davis et al. 2005)
 - Protein-protein interaction data from yeast
 - 7 predicates, 7 types, 1.4M ground atoms
 - Predict Function, Interaction

- **WebKB** (Craven et al. 2001)
 - Webpages from 4 CS departments
 - 3 predicates, 3 types, 4.4M ground atoms
 - Predict Page Class, Linked

- **Facebook Social Network** (source only)
 - 13 predicates, 12 types, 7.2M ground atoms
High-Scoring 2nd-Order Cliques

Homophily

\begin{align*}
\text{Entity 1} & \xrightarrow{\text{Related}} \text{Entity 2} \\
\text{Property} &
\end{align*}

Transitivity

\begin{align*}
\text{Entity 1} & \xrightarrow{\text{Related}} \text{Entity 2} \xrightarrow{\text{Related}} \text{Entity 3} \\
\text{Related} & \xrightarrow{\text{Related}}
\end{align*}

Symmetry

\begin{align*}
\text{Entity 1} & \xrightarrow{\text{Related}} \text{Entity 2} \\
\text{Related} &
\end{align*}
WebKB to Yeast Protein to Predict Function

![Graph showing AUC vs No. Folds Used for Training]

- **AUC**
- **No. Folds Used for Training**
- **Graph Legend:**
 - TDSL
 - Seed
 - Greedy
 - Refine
Facebook to WebKB to Predict Linked
Future Research Issues

- More realistic application domains.
- More bottom-up transfer learners.
- Application to other SRL models (e.g. SLPs, BLPs).
- More flexible predicate mapping
 - Allow argument ordering or arity to change.
 - Map 1 predicate to conjunction of \(>1\) predicates
 - \(\text{AdvisedBy}(X,Y) \Rightarrow \text{Actor}(M,X) \land \text{Director}(M,Y)\)
Multiple Source Transfer

- Transfer from *multiple* source problems to a given target problem.
- Determine which clauses to map and revise from different source MLNs.
Source Selection

• Select useful source domains from a large number of previously learned tasks.

• Ideally, picking source domain(s) is sub-linear in the number of previously learned tasks.
Conclusions

• Two important ways to improve structure learning for SRL models such as MLNs:
 – **Bottom-up Search**: BUSL, Aleph-MLN, LHL
 – **Transfer Learning**: TAMAR, SR2LR, 2ndOrderMLN

• Both improve both the speed of training and the accuracy of the learned model.

• Ideas from “classical ILP” can be very effective for improving SRL.
Questions?

Related papers at:
Why MLNs?

- Inherit the expressivity of first-order logic
 - Can apply insights from ILP
- Inherit the flexibility of probabilistic graphical models
 - Can deal with noisy & uncertain environments
- Undirected models
 - Do not need to learn causal directions
- Subsume all other SRL models that are special cases of first-order logic or probabilistic graphical models [Richardson 04]
- Publicly available software package: Alchemy
Predicate Mapping Comments

• A particular source predicate can be mapped to different target predicates in different clauses.
 – This makes our approach context sensitive.

• More scalable.
 – In the worst-case, the number of mappings is exponential in the number of predicates.
 – The number of predicates in a clause is generally much smaller than the total number of predicates in a domain.
Relationship to Structure Mapping Engine
(Falkenheiner et al., 1989)

- A system for mapping relations using analogy based on a psychological theory.
- Mappings are evaluated based only on the structural relational similarity between the two domains.
- Does not consider the **accuracy** of mapped knowledge in the target when determining the preferred mapping.
- Determines a single global mapping for a given source & target.
Summary of Methodology

1. Learn MLNs for each point on learning curve
2. Perform inference over learned models
3. Summarize inference results using 2 metrics: CLL and AUC, thus producing two learning curves
4. Summarize each learning curve using transfer ratio and percentage improvement from one mega-example
CLL Percent Improvement

Experiment

WebKB to IMDB UW-CSE to IMDB UW-KB to IMDB WebKB to UW-CSE IMDB to UW-CSE

TrKD TAMAR
AUC Percent Improvement

Experiment

- WebKB to IMDB
- UW-CSE to IMDB
- UW-KB to IMDB
- WebKB to UW-CSE
- IMDB to UW-CSE

TrKD
TAMAR