Using Fast Weights to Improve Persistent Contrastive Divergence

Presented by Tijmen Tieleman
Joint work with Geoff Hinton
University of Toronto
What this is about

• An algorithm for **unsupervised** learning: modeling data density. Not classification or regression.

• Using Markov Random Fields
 – Also known as:
 • Energy-based models
 • Log-linear models
 • Products of experts, or product models
 – Such as: Restricted Boltzmann Machines
MRF Learning

• Increase probability where training data is
• Decrease probability when the model assigns much probability
 – Problem: finding those places (sampling) is intractable
• CD or PL: use surrogate samples, a few steps away from the training data.
 – It works 😊 Best application paper etc…
 – But it’s not perfect
The problem with CD

Training data
The problem with CD

Training data
PCD (part 1)

• Gradient descent is iterative.
 – We can reuse data from the previous gradient estimate.
• Use a Markov Chain for getting samples.
• Plan: keep the Markov Chain close to equilibrium.
• Do a few transitions after each weight update.
 – Thus the Chain catches up after the model changes.
• Do not reset the Markov Chain after a weight update (hence ‘Persistent’ CD).
• Thus we always have samples from very close to the model.
PCD (part 2)

• If we would not change the model at all, we would have **exact** samples (after burn-in). It would be a regular Markov Chain.

• The model changes **slightly**,
 – So the Markov Chain is always a little behind.
PCD Pseudocode

- Initialize 100 Markov Chains, negData, arbitrarily
- Initialize the model, theta, with small random weights
- Repeat:
 - Get positive gradient on a batch of training data
 - Get negative gradient on negData.
 - Do learning on theta using the difference of gradients.
 - Update negData using a Gibbs update on the current model.
Let’s take a step back

• Gradient descent is iterative.
 – We can reuse data from the previous estimate.

• Use a Markov Chain for getting samples.

• Plan: keep the Markov Chain close to equilibrium.

• Do a few transitions after each weight update.
 – Thus the Chain catches up after the model changes.

• Do not reset the Markov Chain after a weight update (hence ‘Persistent’ CD).

• Thus we always have samples from very close to the model.
Really?

• Gradient descent is iterative.
 – We can reuse data from the previous estimate.
• Use a Markov Chain for getting samples.
• Plan: keep the Markov Chain close to equilibrium.
• Do a few transitions after each weight update.
 – Thus the Chain catches up after the model changes.
• Do not reset the Markov Chain after a weight update (hence ‘Persistent’ CD).
• Thus we always have samples from very close to the model.
The mixing rate

- Markov Chain (i.e. PCD with learning rate 0)
The mixing rate

- Learning rate: 0.00003
The mixing rate

• Learning rate: 0.0001
The mixing rate

- Learning rate: 0.0003
The mixing rate

• Learning rate: 1
The mixing rate

- Learning rate: 3
The mixing rate

- Learning rate: 10
Learning accelerates mixing

- Negative phase: “wherever negData is, reduce probability (do unlearning)”
- Suddenly, those negData Markov Chains are in a low probability area
- Therefore, they quickly move away, to a higher probability area
- Repeat… repeat…
- Similar but deterministic: “Herding Dynamical Weights to Learn” by Max Welling (poster today)
New idea

• Learning makes the chain mix
• Faster learning makes the chain mix faster…
• …but going too fast will mess up the learning
• Keep separate ‘fast’ weights that learn rapidly
 – Keep them close to the regular weights
 – The chains mix using the fast weights
 – The chains provide good samples for learning
• On the regular weights, the learning rate is small.
FPCD Pseudocode

• Initialization:
 – *regular theta* = small random weights.
 – *fast theta* = all zeros.
 – Initialize *negData* arbitrarily.

• Repeat:
 – Get the *positive gradient* on a batch of training data.
 – Get the *negative gradient* on *negData*.
 – Do learning on both *regular theta* and *fast theta* using the difference of gradients (but with different LR’s).
 – Update *negData* using a Gibbs update, with parameters *regular theta + fast theta*.
 – Update: *fast theta* ← *fast theta* * 0.95
Additional notes

• When \textit{fast theta} is all zeros, FPCD == PCD.

• There should be different learning rates for \textit{regular theta} and \textit{fast theta}.
 – \textit{Regular theta} must learn slowly, to prevent getting bad models.
 – \textit{Fast theta} must learn rapidly, to enable fast mixing.
Results

• FPCD helps a lot...
• ...when not many updates can be done (i.e. large data dimensionality).
• For small models (e.g. toy) with lots of training time → same as PCD.
• More results: poster.
Conclusion

• FPCD = Fast PCD = Persistent Contrastive Divergence using Fast weights
• Use fast learning-causing-mixing, but not on the regular model parameters.
The End
The mixing rate

- Markov Chain (i.e. PCD with learning rate 0)