DEEP LEARNING VIA SEMI-SUPERVISED EMBEDDING

Jason Weston
NEC Labs America, Princeton, USA

Joint work with Ronan Collobert, Frederic Ratle, Hossein Mobahi, Pavel Kuksa and Koray Kavukcuoglu.
Summary

We **pose** deep learning as multi-tasking at different layers with auxiliary tasks.

Hinton, LeCun and Bengio approaches use encoder-decoder models as the auxiliary task.

We propose simple “encoder only” methods: **easy, simple, fast, works well**.

Experiments: can train **very deep networks (15 layers)** with better results than **shallow networks (≤4 layers)** (including SVMs = 1 layer!)

Apply this to:

- **Video**: unlabeled video helps object recognition.
- **Text**: unlabeled text (**600 million examples**) helps tagging tasks.
Deep Learning with Neural Networks [Images: Y. Bengio, Y. LeCun]

NN:
- Very high level representation:
 - MAN
 - SITTING
- ... etc ...
- Slightly higher level representation

CNN:
- Raw input vector representation: $x_1^{23}, x_2^{19}, x_3^{20}, x_n^{18}$
- INPUT 32x32
- C1: feature maps 6@28x28
- S2: f. maps 6@14x14
- C3: f. maps 16@10x10
- S4: f. maps 16@5x5
- C5: layer 120
- F6: layer 84
- OUTPUT 10

Deep = lot of layers. Powerful systems.

Standard backpropagation doesn’t always give great results.
Some Deep Training Methods That Exist

Hinton’s group: DBNs – special kind of an encoder+decoder.

Y. Bengio’s group propose using “classical” autoencoders or denoising encoder+decoders.

LeCun’s group: sparse encoder-decoders.

- **Pre-train with unlabeled data:** “afterwards parameters in a region of space where good optimum can be reached by local descent.”

- **Pre-training: greedy layer-wise** [Image: Larochelle et al. 2007]

 (a) Reconst. \(\mathbf{x} \)
 (b) Reconst. \(\mathbf{h}^1 \)
 (c) Predict \(\mathbf{y} \)

- “Fine-tune” network afterwards using backprop.
Deep and Shallow Research

Deep Researchers (DRs) believe:

- Learn sub-tasks in layers. Essential for hard tasks.
- Natural for multi-task learning.
- Non-linearity is efficient compared to n^3 shallow methods.

Shallow Researchers believe:

- NNs were already complicated and messy.
- New deep methods are even more complicated and messy.
- Shallow methods: clean and give valuable insights into what works.

My p.o.v. → borrow from shallow research, place into deep algorithms
Deep NNs: Multitask with auxiliary unsupervised tasks

- Define “pseudo-supervised” tasks for unlabeled data [Ando & Zhang, 2005] EXAMPLE: predict middle word given a window
- Multi-task labeled + unlabeled tasks, acts as regularizer

Convex learning:
- must train labeled + unlabeled at same time.

Non-convex:
- train sequentially, might still help → explains autoencoders.
- multi-layer nets can be multitasked at each layer.

We will consider multi-tasking with a pairwise embedding algorithm...
Existing Embedding Algorithms

Many existing (“shallow”) embedding algorithms optimize:

\[
\min_{i,j=1}^{U} L(f(x_i), f(x_j), W_{ij}), \quad f_i \in \mathbb{R}^d
\]

MDS: minimize \((||f_i - f_j|| - W_{ij})^2\)

ISOMAP: same, but \(W\) defined by shortest path on neighborhood graph.

Laplacian Eigenmaps: minimize

\[
\sum_{i,j} W_{ij} ||f_i - f_j||^2
\]

subject to “balancing constraint”: \(f^\top D f = I\) and \(f^\top D1 = 0\).
Siamese Networks: functional embedding

Similar to Lap. Eigenmaps but $f(x)$ is a NN.

DrLIM [Hadsell et al.,'06]:

$$L(f_i, f_j, W_{ij}) = \begin{cases}
 \|f_i - f_j\|^2 & \text{if } W_{ij} = 1, \\
 \max(0, m - \|f_i - f_j\|)^2 & \text{if } W_{ij} = 0.
\end{cases}$$

→ neighbors close, others have distance of at least m

- Avoid trivial solution using $W_{ij} = 0$ case → easy online optimization

- $f(x)$ not just a lookup-table → control capacity, add prior knowledge, no out-of-sample problem
Shallow Semi-supervision

SVM: \(\min_{w,b} \gamma ||w||^2 + \sum_{i=1}^{L} H(y_{i}f(x_{i})) \)

Add embedding regularizer: unlabeled neighbors have same output:

- **LapSVM [Belkin et al.]:**
 \[
 \text{SVM} + \lambda \sum_{i,j=1}^{U} W_{ij} ||f(x^*_i) - f(x^*_j)||^2
 \]

 e.g. \(W_{ij} = 1 \) if two points are neighbors, 0 otherwise.

- **“Preprocessing”:**
 Using ISOMAP vectors as input to SVM [Chapelle et al.]...
New regularizer for NNs: Deep Embedding

- Define Neural Network: \(f(x) = h^3(h^2(h^1(x))) \)
- Supervised Training: minimize \(\sum_i \ell(f(x_i), y_i) \)
- Add Embedding Regularizer(s) to training:

 - **Output:** \(\sum_i L(f(x_i), f(x_j), W_{ij}) \) or
 - **Internal:** \(\sum_i L(h^2(h^1(x_i)), h^2(h^1(x_j)), W_{ij}) \)
 - **Aux.:** \(\sum_i L(e(x_i), e(x_j), W_{ij}), \) where \(e(x) = e^3(h^2(h^1(x))) \)
Deep Semi-Supervised Embedding

Input: labeled data \((x_i, y_i)\) and unlabeled data \(x_i^*\), and matrix \(W\)

repeat

Pick random labeled example \((x_i, y_i)\)

Gradient step for \(H(y_if(x_i))\)

for each embedding layer do

Pick a random pair of neighbors \(x_i^*, x_j^*\).

Gradient step for \(L(x_i^*, x_j^*, 1)\)

Pick a random pair \(x_i^*, x_k^*\).

Gradient step for \(L(x_i^*, x_k^*, 0)\)

end for

until stopping criteria
Pairwise Example Prior: more general than using k-NN

Standard way: k-nn with Euclidean distance.

- many methods to make it fast.
- . . . but Eucl. might suck.

Sequences: text, images (video), speech (audio)

- video: patch in frames t & $t + 1 \rightarrow$ same label
- audio: consecutive audio frames \rightarrow same speaker + word ..
- text: word + neighbors \rightarrow same topic

Web data:

- use links/click-through information to collect neighbors
- images and text on same page
Some Perspectives

- General [Ando & Zhang ’05] framework: sometimes difficult to define the task?

- Embedding is a class of auxiliary task, still free to define pairs.

- Encoder+Decoders= another class: learn regions of space that are densely populated (support of density?). Pairwise Embedding does something similar (encoder without decoder?).

- Pairwise Embedding has no decoder: for sparse inputs (e.g. bag of words) this is much faster than dense decoding.

- Another way: [Yu et al. ’08] proposed NN auxiliary task approximating a known useful distance metric given by a hand-engineered kernel.

Our method should help when the “auxiliary” embedding matrix W is correlated to the supervised task.
Some Experiments: Small Semi-Supervised Setup

Typical shallow semi-supervised datasets:

<table>
<thead>
<tr>
<th>data set</th>
<th>classes</th>
<th>dims</th>
<th>points</th>
<th>labeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>g50c</td>
<td>2</td>
<td>50</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Text</td>
<td>2</td>
<td>7511</td>
<td>1946</td>
<td>50</td>
</tr>
<tr>
<td>Uspst</td>
<td>10</td>
<td>256</td>
<td>2007</td>
<td>50</td>
</tr>
<tr>
<td>Mnist1h</td>
<td>10</td>
<td>784</td>
<td>70k</td>
<td>100</td>
</tr>
<tr>
<td>Mnist6h</td>
<td>10</td>
<td>784</td>
<td>70k</td>
<td>600</td>
</tr>
<tr>
<td>Mnist1k</td>
<td>10</td>
<td>784</td>
<td>70k</td>
<td>1000</td>
</tr>
</tbody>
</table>

- First experiment: Only consider two-layer nets.
Deep Semi-Supervised Results

<table>
<thead>
<tr>
<th>Method</th>
<th>g50c</th>
<th>Text</th>
<th>Uspst</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>8.32</td>
<td>18.86</td>
<td>23.18</td>
</tr>
<tr>
<td>SVMLight-TSVM</td>
<td>6.87</td>
<td>7.44</td>
<td>26.46</td>
</tr>
<tr>
<td>∇TSVM</td>
<td>5.80</td>
<td>5.71</td>
<td>17.61</td>
</tr>
<tr>
<td>LapSVM*</td>
<td>5.4</td>
<td>10.4</td>
<td>12.7</td>
</tr>
<tr>
<td>NN</td>
<td>8.54</td>
<td>15.87</td>
<td>24.57</td>
</tr>
<tr>
<td>EmbedNN(^O)</td>
<td>5.66</td>
<td>5.82</td>
<td>15.49</td>
</tr>
<tr>
<td>Model</td>
<td>Mnist1h</td>
<td>Mnist6h</td>
<td>Mnist1k</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>SVM</td>
<td>23.44</td>
<td>8.85</td>
<td>7.77</td>
</tr>
<tr>
<td>TSVM</td>
<td>16.81</td>
<td>6.16</td>
<td>5.38</td>
</tr>
<tr>
<td>RBM (*)</td>
<td>21.5</td>
<td>-</td>
<td>8.8</td>
</tr>
<tr>
<td>SESM (*)</td>
<td>20.6</td>
<td>-</td>
<td>9.6</td>
</tr>
<tr>
<td>DBN-rNCA (*)</td>
<td>-</td>
<td>8.7</td>
<td>-</td>
</tr>
<tr>
<td>NN</td>
<td>25.81</td>
<td>11.44</td>
<td>10.70</td>
</tr>
<tr>
<td>$Embed^ONN$</td>
<td>17.05</td>
<td>5.97</td>
<td>5.73</td>
</tr>
<tr>
<td>$Embed^{l1}NN$</td>
<td>16.86</td>
<td>9.44</td>
<td>8.52</td>
</tr>
<tr>
<td>$Embed^{A1}NN$</td>
<td>17.17</td>
<td>7.56</td>
<td>7.89</td>
</tr>
<tr>
<td>CNN</td>
<td>22.98</td>
<td>7.68</td>
<td>6.45</td>
</tr>
<tr>
<td>$Embed^O CNN$</td>
<td>11.73</td>
<td>3.42</td>
<td>3.34</td>
</tr>
<tr>
<td>$Embed^{l5}CNN$</td>
<td>7.75</td>
<td>3.82</td>
<td>2.73</td>
</tr>
<tr>
<td>$Embed^{A5}CNN$</td>
<td>7.87</td>
<td>3.82</td>
<td>2.76</td>
</tr>
</tbody>
</table>
Really Deep Results

Same MNIST1h dataset, but training 2-15 layer nets (50HUs each):

<table>
<thead>
<tr>
<th>layers</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>26.0</td>
<td>26.1</td>
<td>27.2</td>
<td>28.3</td>
<td>34.2</td>
<td>47.7</td>
</tr>
<tr>
<td>EmbedNN(^O)</td>
<td>19.7</td>
<td>15.1</td>
<td>15.1</td>
<td>15.0</td>
<td>13.7</td>
<td>11.8</td>
</tr>
<tr>
<td>EmbedNN(^ALL)</td>
<td>18.2</td>
<td>12.6</td>
<td>7.9</td>
<td>8.5</td>
<td>6.3</td>
<td>9.3</td>
</tr>
</tbody>
</table>

- EmbedNN\(^O\): auxiliary 10-dim embedding on output layer
- EmbedNN\(^ALL\): auxiliary 10-dim embedding on every layer.
- Trained jointly with supervised signal, as before.
- (NOTE: Train error of NN can easily achieve 0.)
- SVM: 23.4%, TSVM: 16.8%
Conclusions (so far)

EmbedNN generalizes shallow semi-supervised embedding.

- Easy to train.
- No pre-training, no decoding step = simple, fast.
- Seems to train very deep networks.

NOW... we will apply this to:

- Video: unlabeled video helps object recognition.
- Text: unlabeled text (600 million examples) helps tagging tasks.
Deep Learning For Video
APPLICATION: LEARNING FROM VIDEO

- Two consecutive frames likely to contain the same object or objects.

- Improve deep layers (internal representation of images):

 learn invariance to pose, illumination, background or clutter, deformations (e.g. facial expressions) or occlusions.

- Video collections obtained without human annotation.

- We show this works for varying video sources.

- Biologically, supervised learning isn’t so plausible, but this might be..
• COIL-100 database.
 – 100 objects, 72x72 pixels.
 – 72 different poses.

• COIL-Like database.
 – 40 objects, 72 views.
 – 4 types (fruits, cars, cups, cans).
 – videotream
 – collected to look like COIL.

• Animal database.
 – 60 animals (horses, rabbits, . . .
 – videotream
 – no objects in common with COIL.
Experimental setup

• **Supervised task from COIL**: 4 views for train, 68 for test. 30 or 100 objects for train/test following [Wersing, 2003].

• **COIL video**: transductive (100 objects) and semi-supervised (70 object) settings + COIL-Like and Animal videos.

• **Methods**:
 – Baseline methods: SVM, Nearest neighbors, . . .
 – Baseline CNN
 – strongly engineered Neural Net (VTU) [Wersing et. al., 2003]\(^a\)
 – Our *videoCNN* with different video sources.

\(^a\)The VTU method builds a hierarchy of biologically inspired feature detectors. It applies Gabor filters at four orientations, followed by spatial pooling, and learns receptive field profiles using a special type of sparse coding algorithm with invariance constraints.
Test Accuracy Performance on COIL100 in various settings.

<table>
<thead>
<tr>
<th>Method</th>
<th>30 objects</th>
<th>100 objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearest Neighbor</td>
<td>81.8</td>
<td>70.1</td>
</tr>
<tr>
<td>SVM</td>
<td>84.9</td>
<td>74.6</td>
</tr>
<tr>
<td>SpinGlass MRF</td>
<td>82.8</td>
<td>69.4</td>
</tr>
<tr>
<td>Eigen Spline</td>
<td>84.6</td>
<td>77.0</td>
</tr>
<tr>
<td>VTU</td>
<td>89.9</td>
<td>79.1</td>
</tr>
<tr>
<td>Standard CNN</td>
<td>84.88</td>
<td>71.49</td>
</tr>
<tr>
<td>videoCNN V:COIL100</td>
<td>-</td>
<td>92.25</td>
</tr>
<tr>
<td>videoCNN V:COIL“70”</td>
<td>95.03</td>
<td>-</td>
</tr>
<tr>
<td>videoCNN V:COIL-Like</td>
<td>-</td>
<td>79.77</td>
</tr>
<tr>
<td>videoCNN V:Animal</td>
<td>-</td>
<td>78.67</td>
</tr>
</tbody>
</table>

Outperforms baselines without using engineered features.
Deep Learning For Text
NLP Tasks

- **Part-Of-Speech Tagging (POS):** syntactic roles (noun, adverb...)
- **Chunking:** syntactic constituents (noun phrase, verb phrase...)
- **Name Entity Recognition (NER):** person/company/location...
- **Semantic Role Labeling (SRL):** semantic role

 [John]$_{ARG0}$ [ate]$_{REL}$ [the apple]$_{ARG1}$ [in the garden]$_{ARGM-LOC}$

Labeled data: Wall Street Journal ($\sim 1M$ words)
The “Brain Way”

Deep learning seems radically different to the traditional NLP approach:

- **Avoid** building a parse tree. Humans don’t need this to talk.
- We try to **avoid** all hand-built features → monolithic systems.
- Humans **implicitly** learn these features. Neural networks can too…?

→ End-to-end system + Fast predictions (0.02 sec/sentence)
The Deep Learning Way

INPUT: lower case words

LEARN: word feature vectors using *auxiliary embedding.*
Using Unlabeled Data

Language Model: “is (part of) a sentence actually english or not?”
Implicitly captures
★ syntax
★ semantics

Trained over Wikipedia (∼ 631M words)

Bengio & Ducharme (2001)
Probability of next word given previous words

Pick word + neighborhood → $W_{ij} = 1$ (push together) +ve pair
“The cat sat on the” → “mat”

Same neighborhood + random word → $W_{ij} = 0$ (push apart)
“The cat sat on the” ← → “DBN” -ve pair
<table>
<thead>
<tr>
<th>Country</th>
<th>Phrase</th>
<th>Console</th>
<th>Color</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>JESUS</td>
<td>XBOX</td>
<td>REDDISH</td>
<td>SCRATCHED</td>
</tr>
<tr>
<td></td>
<td>454</td>
<td>6909</td>
<td>11724</td>
<td>29869</td>
</tr>
<tr>
<td>Spain</td>
<td>CHRIST</td>
<td>PLAYSTATION</td>
<td>YELLOWISH</td>
<td>SMASHED</td>
</tr>
<tr>
<td>Italy</td>
<td>GOD</td>
<td>DREAMCAST</td>
<td>GREENISH</td>
<td>RIPPED</td>
</tr>
<tr>
<td>Russia</td>
<td>RESURRECTION</td>
<td>PS2</td>
<td>BROWNISH</td>
<td>BRUSHED</td>
</tr>
<tr>
<td>Poland</td>
<td>PRAYER</td>
<td>SNES</td>
<td>BLUISH</td>
<td>HURLED</td>
</tr>
<tr>
<td>England</td>
<td>YAHWEH</td>
<td>WII</td>
<td>CREAMY</td>
<td>GRABBED</td>
</tr>
<tr>
<td>Denmark</td>
<td>JOSEPHUS</td>
<td>NES</td>
<td>WHITISH</td>
<td>TOSSED</td>
</tr>
<tr>
<td>Germany</td>
<td>MOSES</td>
<td>NINTENDO</td>
<td>BLACKISH</td>
<td>SQUEEZED</td>
</tr>
<tr>
<td>Portugal</td>
<td>SIN</td>
<td>GAMECUBE</td>
<td>SILVERY</td>
<td>BLASTED</td>
</tr>
<tr>
<td>Sweden</td>
<td>HEAVEN</td>
<td>PSP</td>
<td>GREYISH</td>
<td>TANGLED</td>
</tr>
<tr>
<td>Austria</td>
<td>SALVATION</td>
<td>AMIGA</td>
<td>PALER</td>
<td>SLASHED</td>
</tr>
</tbody>
</table>
Deep Text Results

WSJ for POS, CHUNK (CoNLL 2000) & SRL (CoNLL 2005)

Reuters (CoNLL 2003) for NER

<table>
<thead>
<tr>
<th>Approach</th>
<th>POS (%) Err</th>
<th>CHUNK (F1)</th>
<th>NER (F1)</th>
<th>SRL (F1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Systems</td>
<td>2.76</td>
<td>94.39/94.13</td>
<td>89.31/88.76</td>
<td>77.92‡/74.76†</td>
</tr>
<tr>
<td>CNN</td>
<td>3.15</td>
<td>88.82</td>
<td>81.61</td>
<td>51.16</td>
</tr>
<tr>
<td>EmbedCNN</td>
<td>2.78</td>
<td>94.18</td>
<td>88.88</td>
<td>71.81*†</td>
</tr>
</tbody>
</table>

Top Systems:

- Toutanova et al. (‘03) for POS
- Ando & Zhang (‘05) and Florian et al. for NER,
- Sha et al. (‘03) for CHUNK
- Punyakanok et al. (2005) for SRL

‡ Uses the Charniak top-5 parse trees, and the Collins parse tree † Uses the Charniak parse tree only
Final Conclusion (really)

- **New Deep Learning Method**:
 - Unsupervised pairwise embedding.
 - Improves internal representation in NN.

- **Applications**: images, text, ... web ?

- **Software**: http://torch5.sourceforge.net

Thanks!