Automated detection of electrocardiographic diagnostic features through an interplay between Spatial Aggregation and Computational Geometry

Liliana Ironi, Stefania Tentoni
IMATI-CNR Pavia

Acknowledgement: P. Colli Franzone, Dept. of Math, Univ. of Pavia
B. Taccardi, Univ. of Utah
Outline

- Functional Imaging & Image Based Diagnosis
- Electrocardiographic maps: a valuable support to the assessment of the cardiac electric function
- Automated Feature Extraction through Spatial Aggregation and Computational Geometry: approach and methods
- Diagnostic features for reentry arrhythmias due to conduction block

Results

- Sensitivity to noise and tuning parameters

Conclusions & Future work
Functional Imaging & Image Based Diagnosis

Spatially referenced measures of a relevant variable

Visual representation of the variable’s course within an anatomical framework
Functional Imaging & Image Based Diagnosis

Spatially referenced measures of a relevant variable

Feature extraction methods

Visual representation of the variable’s course within an anatomical framework

Identification of visual expressions of salient events (features)
Functional Imaging & Image Based Diagnosis

Spatially referenced measures of a relevant variable

Feature extraction methods

Visual representation of the variable’s course within an anatomical framework

Identification of visual expressions of salient events (features)

Image Based Diagnosis:

Imagistic Reasoning process, performed through salient features identification. It aims at

- Describing the physical phenomena in terms of key events
- Searching for specific patterns that are known to characterize classes of pathologies
Core task of any form of IR is **Feature Extraction:**

multiple level abstraction of spatial objects that encapsulate key properties of the physical system

Key computational issues:
- Encoding of specific domain knowledge and relations (spatial contiguity, topological adjacencies, function-based similarities …)
- Representation/manipulation of abstract spatial objects

Goal:

Computational framework for **automated map interpretation**; emulation of IR through Spatial Aggregation and Computational Geometry methods
Imaging of the cardiac electric activity

ECGs: well established interpretative rationale. Poor spatial resolution.

Maps (BS, epicardium, endocardium...): high spatial resolution.

Map interpretation (visual features ↔ underlying phenomena) requires specialized skills. Automated tools would greatly impact on clinical practice.

Epicardial maps: can be obtained noninvasively. Precise localization of events. → High diagnostic potential.

Epicardial activation maps
Activation time at x: minimum of the time derivative of the electric potential $u(x,t)$
→ An activation map embeds an important qualitative state of the potential. It conveys synthetical info about spatio-temporal events (wavefront kinematics).
An example: activation isochrones during VT

Measured map from isolated dog heart experiments described in:
Burnes, J. E. et al. Circulation
2000;102:2152-2158
Excitation starts here
(breakthrough site)
Spatially dense isochrones

↓

very-slow conduction
Conduction block (v<v*)
Conduction block
Reentry propagation pattern
Feature extraction problem

INPUT

- 3D geometry and activation time field:

\[\Omega_h = \{x_i\}, \quad \tau_i = \tau(x_i), \quad i=1..N \]

Current data: model geometry, simplified scenarios, little added noise.

OUTPUT

- Wavefront kinematics: spatio-temporal sequence of isochrones

\[I_k = \{ x \mid \tau(x) = k \cdot \Delta \tau \} \]

- Wavefront breakthrough and extinction sites

\[R_b = \{ x \mid \tau(x) = \min \tau \}, \quad R_e = \{ x \mid \tau(x) = \max \tau \} \]

- Propagation velocity patterns (in particular \(\text{vmax} \))

- VerySlow conduction region

\[L = \{ x \mid v(x) < v^* = 0.1 \text{ m/sec} \} \]

- \(L \neq \emptyset \): Conduction block / reentry circuit
Inference mechanisms ground on the integration of

- **Spatial Aggregation (SA):** QSR methodology for multiple level abstraction, from a numeric field, of spatial objects fulfilling specified relations. SA predicates exploit specific domain knowledge and qualitative mappings of physical variables.

- **Computational Geometry:** to define and manage suitable symbolic representations of the abstracted spatial objects.

Approach & Methods

Numeric field → multi-layered symbolic description of the structure and behavior of the physical vars associated with it.
Spatial Aggregation (Bailey-Kellog, Yip, Zhao, 1996--; Ironi, Tentoni, 2003-)

Aggregate: spatial contiguity of objects is explicated through a neighbourhood graph

Classify: contiguous objects sharing a property are gathered into homogeneous classes

Redescribe: each class is instantiated as a new object

Hierarchical strategy in aggregating spatial objects to abstract a field at different levels
Overview of the abstraction processes

Field data (mesh + act. times)
\[\Omega_h = \{x_i, \mathcal{N}_\Omega\}, \quad \mathcal{T}_h = \{\tau_i\} \]

Isopoints \(\mathcal{P} \)

Contiguity \(\mathcal{N}_\mathcal{P} \)

Breakthrough & extinction regions \(\mathcal{R}_b, \mathcal{R}_e \)

wf propagation velocity \(\mathbf{v} \)

Isochrones \(\mathcal{I} \)

Contiguity \(\mathcal{N}_\mathcal{I} \)

Contiguity \(\mathcal{N}_{\mathcal{P} | \mathcal{I}} \)

Contiguity \(\mathcal{N}_{\mathcal{W}} \)

W-fragments \(\mathcal{W} \)

Contiguity mapping

Qualitative mapping

SA abstraction

New object

SimilarlyActivated

q: \([0, T] \rightarrow Q_z\)

v direction

v magnitude

\(\mu_1: \mathbf{v}(I) \rightarrow Q_v \)

W-fragments propagation direction

Qualitative propagation velocity bands

.... and more

Double reentry circuit identification

1. VerySlow conduction region $\mathcal{L} = \{ x \mid v(x) < v^* \} \neq \emptyset$,
2. **Line of block** \mathcal{L}^* (redescription of \mathcal{L}),
3. Reentry pattern; critical close-and-counterposed e/b couple.

- $\partial \mathcal{L}$ is abstracted as v^*-contour;
- \mathcal{L} is redescribed by its **gross skeleton** \mathcal{L}^*, which captures its structure at a **low complexity** scale, retaining the topology;
- Propagation lines exiting the blocked area get classified. Ending site e proximal and counterposed to b is identified;
Algorithm (Gross skeleton):
Given $\partial \mathcal{L} = \text{closed polyline } \{v^*-\text{contour}\}$, vertices $P_1..P_n$,

1 - Compute the Voronoi approximation \mathcal{M} of its medial axis:
 1.a Build Voronoi diagram related to $\{P_1..P_n\}$
 1.b Keep only edges internal to \mathcal{L};
Algorithm (Gross skeleton):

Given $\partial \mathcal{L} = \text{closed polyline } \{v^*-\text{contour }\}$, vertices $P_1..P_n$.

1 - Compute the Voronoi approximation \mathcal{M} of its medial axis:
 1.a Build Voronoi diagram related to $\{P_1..P_n\}$
 1.b Keep only edges internal to \mathcal{L};

Remarks:

- \mathcal{M} is a topological skeleton, whose #branches corresponds to contour’s complexity (#curvature extrema)
- \mathcal{M} is sensitive to noise \rightarrow inadequate as a shape global descriptor
- Many applications (obj recognition, reasoning tasks..), don’t need fine scale details

Pruning is crucial to get rid of spurious / irrelevant details.

Unneeded info about finer contour details can be dropped to obtain a simplified skeleton that represents the global structure of the region.
Algorithm (Gross skeleton):

Given $\partial \mathcal{L} = \text{closed polyline} \{v^*-\text{contour} \}$, vertices $P_1..P_n$,

1 - Compute the Voronoi approximation \mathcal{M} of its medial axis:
 1.a Build Voronoi diagram related to $\{P_1..P_n\}$
 1.b Keep only edges internal to \mathcal{L};

2 - Define “index of relevance” (*) of an edge E of \mathcal{M}
 $$\beta (E) = \frac{2l}{|\partial \mathcal{L}|}$$
 where l is the shortest path connecting vertices P_i with P_k along $\partial \mathcal{L}$, P_i, P_k are the generators of Voronoi edge E.

3 - For each edge E of \mathcal{M}, prune edge if $\beta (E) < \beta^*$ (relevance criterion).

The resulting graph \mathcal{L}^* represents the gross structure of \mathcal{L}, retaining its topology at a lower complexity scale.

Algorithm (Gross skeleton):

Given $\partial L = \text{closed polyline } \{\nu^*-\text{contour}\}$, vertices $P_1..P_n$,

1 - Compute the Voronoi approximation \mathcal{M} of its medial axis:
 1.a Build Voronoi diagram related to $\{P_1..P_n\}$
 1.b Keep only edges internal to L;

2 - Define “index of relevance” (*) of an edge E of \mathcal{M}
 \[\beta(E) = \frac{2l}{|\partial L|} \]
 where l is the shortest path connecting vertices P_i with P_k along ∂L, P_i, P_k are the generators of Voronoi edge E.

3 - For each edge E of \mathcal{M}, prune edge if $\beta(E) < \beta^*$ (relevance criterion).
Choice of β^*

$k(.) = \#\text{branches (complexity)}$

$\Phi(.) = \text{diameter of minimal bounding circle (extension)}$

$V: \text{region's boundary}$

$P: \text{gross skeleton (=pruned } \mathcal{M})$

\[\beta^* = \arg \left[\left(\max \frac{\Phi(P)}{\Phi(V)} \right)^{\frac{d k(P)}{d \beta}} \approx 0 \right] \]
\(\beta^* = 0.25 \)

\(n = 30 \) perturbations

\(\text{SNR} = 148.3 \)

\(V \): region’s boundary

\(M \): medial axis

\(P \): gross skeleton (pruned m.a.)

Initial configuration \((V_0, P_0, M_0) \)

Worst perturbation \((k(M)=10) \)
\[\beta^* = 0.25 \]

\[\delta(P,P') = \text{displacement of } P \text{ w.r. to } P' \]

<table>
<thead>
<tr>
<th></th>
<th>mean (^(^\wedge^))</th>
<th>st.dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi(P'))</td>
<td>1.8</td>
<td>7.0 e-2</td>
</tr>
<tr>
<td>(\Phi(V))</td>
<td>2.4</td>
<td>1.6 e-2</td>
</tr>
<tr>
<td>(\delta(P,P_0))</td>
<td>3.8 e-2</td>
<td>8.2 e-3</td>
</tr>
<tr>
<td>(\delta(V,V_0))</td>
<td>4.7 e-2</td>
<td>1.5 e-2</td>
</tr>
</tbody>
</table>
\(\beta^* = 0.25 \)

\[
\hat{k}(M) = 8.17 \quad \text{range} = 3 \div 10
\]

\[
\hat{k}(P) = 0 \quad \text{range} = 0 \div 0
\]

\[
\hat{\delta}(P, P_0)/\hat{\Phi}(P) = 2.1\%
\]

\[
\hat{\delta}(V, V_0)/\hat{\Phi}(V) = 2.0\%
\]

\[
\hat{\Phi}(P)/\hat{\Phi}(V) = 74.6\%
\]

\[
\Phi(P_0)/\Phi(V_0) = 74.0\%
\]

\[
\text{err}(\Phi(P)) = \left| \Phi(P) - \Phi(P_0) \right|/\Phi(P_0) = 5.2 \times 10^{-3}
\]

\[
\delta(P, P') = \text{displacement of } P \text{ w.r. to } P'
\]

<table>
<thead>
<tr>
<th></th>
<th>mean ((^\wedge))</th>
<th>st.dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi(P'))</td>
<td>1.8</td>
<td>7.0 e-2</td>
</tr>
<tr>
<td>(\Phi(V))</td>
<td>2.4</td>
<td>1.6 e-2</td>
</tr>
<tr>
<td>(\delta(P, P_0))</td>
<td>3.8 e-2</td>
<td>8.2 e-3</td>
</tr>
<tr>
<td>(\delta(V, V_0))</td>
<td>4.7 e-2</td>
<td>1.5 e-2</td>
</tr>
</tbody>
</table>
Some results

Input data

Isopoints’ ngraph

Isochrones, breakthrough and exit sites
Check for conduction blocks

Very-slow conduction region

Medial axis and gross skeleton

Line of conduction block
Classification of propagation lines

Global outcome
Conclusions & future work

Both numerical and qualitative pieces of information and methods are exploited within a **SA conceptual framework** for IR, focused on the **extraction of spatial objects**, corresponding to **salient spatio-temporal features, at multiple scales**.

Map interpretation task is currently tailored to Electrocardiography

Further steps: definition of a vocabulary of features, and rules for their comparison; automated explanation of results

- More propagation features (e.g. primary area) according to advancements of the interpretation rationale
- More simulated data related to pathological conditions
- Deeper treatment of noise
Fig. 4A