How to quantify the influence of correlations on investment diversification

Matúš Medo1, Chi Ho Yeung2, Yi-Cheng Zhang1

1University of Fribourg, Switzerland
2Department of Physics, HKUST, Hong Kong, China

International workshop on coping with crises in complex socio-economic systems
Zürich, June 12, 2009
Investor’s story

Coca-Cola
Investor’s story

DIVERSIFICATION

Diversification?

Medo, Yeung, Zhang (UNIFR, HKUST)
Investor’s story

DIVERSIFICATION

Medo, Yeung, Zhang (UNIFR, HKUST)
Investor’s story

DIVERSIFICATION?

DIVERSIFICATION
Mean-Variance portfolio (Markowitz, 1952)

- \(M \) stocks:
 - average returns \(\mu_i \)
 - return variances \(V_i \)
 - return correlations \(C_{ij} \) (matrix \(M \times M \))

portfolio return:
\[
R_P = \sum_{i=1}^{M} f_i \mu_i
\]

portfolio variance:
\[
V_P = \sum_{i=1}^{M}, j=1 \ldots M f_i f_j C_{ij} \sqrt{V_i V_j}
\]

mean-variance portfolio:
minimizes \(V_P \) for a given \(R_P \)
Mean-Variance portfolio (Markowitz, 1952)

- **M** stocks:
 - average returns \(\mu_i \)
 - return variances \(V_i \)
 - return correlations \(C_{ij} \) (matrix \(M \times M \))

- **our portfolio**: fractions of wealth \(f_i \) invested in individual stocks

portfolio return: \(R_P = \sum_{i=1}^{M} f_i \mu_i \)

portfolio variance: \(V_P = \sum_{i,j=1}^{M} f_i f_j C_{ij} \sqrt{V_i V_j} \)
Mean-Variance portfolio (Markowitz, 1952)

- **M** stocks:
 - average returns μ_i
 - return variances V_i
 - return correlations C_{ij} (matrix $M \times M$)

- **our portfolio**: fractions of wealth f_i invested in individual stocks

 portfolio return:
 \[
 R_P = \sum_{i=1}^{M} f_i \mu_i
 \]

 portfolio variance:
 \[
 V_P = \sum_{i,j=1}^{M} f_i f_j C_{ij} \sqrt{V_i V_j}
 \]

- **mean-variance portfolio**: minimizes V_P for a given R_P
the optimal portfolio variance

$$V_P^*(R_P, M, C) = \ldots$$

let’s focus purely on correlations: $$\mu_i = \mu, \ V_i = V$$
the optimal portfolio variance

\[V^*_P(R_P, M, C) = \ldots \]

let's focus purely on correlations: \(\mu_i = \mu, \ V_i = V \)

effective portfolio size \(m_{ef} \)

optimal portfolio constructed from \(M \) correlated assets \(\iff \) optimal portfolio constructed from ??? uncorrelated assets
the optimal portfolio variance

$V_P^*(R_P, M, C) = \ldots$

let’s focus purely on correlations: $\mu_i = \mu$, $V_i = V$

effective portfolio size m_{ef}

optimal portfolio constructed from M correlated assets \iff optimal portfolio constructed from $\implies m_{ef}$ uncorrelated assets

$V_P^*(R_P, M, C) = V_P^*(R_P, m_{ef}, 1) \implies m_{ef}$
Effective portfolio size: properties

\[m_{\text{ef}} = \sum_{i,j=1}^{M} (C^{-1})_{ij} \]
Effective portfolio size: properties

\[m_{ef} = \sum_{i,j=1}^{M} (c^{-1})_{ij} \]

- no correlations:
 \[m_{ef} = M \]
Effective portfolio size: properties

\[m_{ef} = \sum_{i,j=1}^{M} (C^{-1})_{ij} \]

- no correlations:
 \[m_{ef} = M \]

- perfect correlations:
 \[m_{ef} = 1 \]
Effective portfolio size: properties

\[m_{ef} = \sum_{i,j=1}^{M} (C^{-1})_{ij} \]

- no correlations:
 \[m_{ef} = M \]

- perfect correlations:
 \[m_{ef} = 1 \]

- \(N \) groups of stocks with no inter-group correlations:
 \[m_{ef} = m_{ef}(1) + \cdots + m_{ef}(N) \]
Effective portfolio size: saturation

- all correlations identical:

\[m_{\text{ef}} = \frac{M}{1 + (M - 1)C} \]
Effective portfolio size: saturation

- all correlations identical:

\[m_{ef} = \frac{M}{1 + (M - 1)C} \rightarrow \frac{1}{C} \]
Effective portfolio size: saturation

- all correlations identical:

\[m_{ef} = \frac{M}{1 + (M - 1)C} \rightarrow \frac{1}{C} \]
Effective portfolio size: evolution

20 current stocks from the DJIA (Jan 1973—Apr 2008)
The end

Thank you for your attention