COIN Workshop
Semantic Interoperability Services

Budapest, 05.05.2009
Francesco Taglino, Michele Missikoff
LEKS, IASI-CNR (ITALY)
Outline

• Information interoperability services
 – Information interoperability problem
 – The Athena semantic reconciliation approach and suite
 – The COIN innovative services

• Knowledge Interoperability services
 – Objectives
 – Beyond the State of the Art
 – Semantic Supporting Services (SSS)
 – Knowledge Interoperability Services (KIS)

• Conclusions
Introduction

Two kinds of semantic interoperability services for

• Reconciliation of business documents (information interoperability)
• Management of enterprise competencies and skills (knowledge interoperability)
Information interoperability services
Information interoperability problem

AppA

Different data organization

AppC

Different data structure

AppB

Different terminology
The EAI state-of-the-Art solution

- Geometric growth $O(n^2)$ of the adapters respect to the number of parties
- Maintenance issues
The Athena reconciliation approach

Preparation phase
- **Mapping** = Semantic Annotation + Transf rules
- Mapping expressed in terms of a **RO**
- **Two rulesets** for each SA

Run time phase
- **Reconciliation** through pipelining application of rules

Transformation Rules
- Forward (App_x2RO)
- Backward (RO2App_x)
Semantic Reconciliation suite

Athos: Reference Ontology
A*: Semantic Annotation Tool
Argos: Transformation Rules Repository
Themis
RDFS Models Repository

Doc Schema_A
Doc Schema_B
App_A
Doc Instance_A
Doc Instance_B
App_B

Preparation phase
Run-time phase
Semantic mismatch patterns

Lossless mismatches
can be solved without loss of information

- **Naming**: different labels for the same content
- **Attribute granularity**: the same information is splitted in a different number of attributes
- **Structure Organization**: different structures and organization of the same content
- **Subclass-Attribute**: an attribute with predefined value set is represented by a set of subclasses
- **Schema-Instance**: data hold schema information
- **Encoding**: different format of data or unit of measure

Lossy mismatches
any transformation can cause a loss of information

- **Content**: different content denoted by the same concept (typically expressed by enumeration)
- **Coverage**: the presence/absence of information
- **Precision**: the accuracy of information
- **Abstraction**: level of specialisation refinement of the information
E-procurement scenario
(inspired by the ISOIN scenario)

Buyer (EADS-CASA)

Sending RFQ

Evaluating Quotation

Issuing PO

Receiving Goods

Paying Invoice

Supplier (INESPASA)

Processing RFQ

Processing PO

Fulfilling PO

Delivering Goods

Invoicing

Purchase Order

OrdConf

Invoice
Ontology for interoperability
The Reference Ontology

- The first key element of the proposed approach
- Used to **describe the domain** of interest and to give meaning to the structure of business documents to be reconciled
- Based on definition of **concepts** and **relationships** (Structuring Ontology)
- The construction of the ontology is supported by the **Athos** tool, based on the **OPAL** (Object, Process and Actor) ontological framework
Primary

- **Actor_kind**: aimed at modelling any relevant entity of the domain that is able to activate or perform a process (e.g., Company, ...)
- **Object_kind**: aimed at modelling a passive entity, on which a process operates, typically to modify its state (e.g., RFQ, Invoice, ...)
- **Process_kind**: aimed at modelling an activity that is performed by an actor (e.g., Sending Invoice, ...)

Complementary

- **Atomic Attribute, Complex Attribute, Message, BOD**

The OPAL concepts are connected by conceptual relations
Building an **OPAL concept** means filling a template with the following structure:

- **Identification Section**
 - Description, author, XML tag, …
 - Attributes, hierarchies, constraints
 - Specific domain relations w/ other concepts

- **Structural Section**
 - “kind” Specific Section

- **Instance**
Ontology as a semantic net
Semantic Annotation
Building an annotation expression:
1. Using an existing concept of RO
 or
2. Creating a new concept by composing elements of RO

Linking the annotation expression to the resource

{ x|9y(Invoice(x)∧hasTotal(x,y)^Total(y)) }
A Semantic Annotation progressive approach

SA methodology defined as a stepwise approach

L=4

Full SA (FSA), The annotation is an OWL expression.

L=3

Simple SA (SSA), Paths from the PSA level are combined to build simple expressions by using abstract operators (⊔, binary operator; φ, unary operator). Identification of the covered mismatch

L=2

Path SA (PSA), the annotation is represented by a set of paths from the RO

L=1

Terminological SA (TSA), The annotation is represented by a set of terms taken from the definition of concepts in the RO
Terminological SA – an example

The annotation is represented by a set of terms taken from the definition of concepts in the RO.

AIDIMA order

```
order =: PurchaseOrder_BOD
buyerInfo =: Buyer_BA,
contactPerson =: ContactPerson_BA
name =: FirstName_AA, Surname_AA, Name_AA
...
```

RO

TSA Set
Simple SAX – an example

- Identification of the covered mismatch kind
- This level is taken as specification for the Transf Rules definition

```
order.has_orderHeader.has_buyerInfo.has_organisationInfo.has_contactPerson.has_name

=: PurchaseOrder_BOD.relTo_Buyer.relTo_ContactPerson.hasPart_FirstName ⊕ PurchaseOrder_BOD.relTo_Buyer.relTo_ContactPerson.hasPart_Surname
```

SSA Expression (Granularity/Splitting)
Transformation Rules
Transformation Rules

- **Semantic Annotation** as *declarative specifications* for mismatches solution
 - a *conceptual correspondence* between resources and concepts in the ontology
- **Transformation Rules** as an *operational specification* for transforming ground resources (i.e., data) into ontology instances (forward transf.) and vice versa (backward transf.)
- The reconciliation platform is based on the [Jena2](http://jena.hpl.hp.com/) suite (an open-source reasoning platform produced by HP)
- Rules are written in accordance with the [Jena2 rules syntax](http://jena.hpl.hp.com/)
- The transformation Rules building is supported by the [Argos](http://argos.heanet.ie/) tool
ARGOS: a Transformation Rules building tool

- A graphical environment supporting a user in defining transformation rules guided by
 - Document Schema
 - Semantic Annotations
 - Reference Ontology
 - A set of Rule Templates (e.g., map, split, merge, …)
- using an abstract but expressive syntax

\[\text{instantiated Rules are automatically transformed by ARGOS into executable code (Jena rules) for the reconciliation engine (ARES)}\]

- An intuitive interface supports the user in parametrising transformation templates (Rule Templates)
From Semantic Annotation to Transformation Rules

order has_orderHeader has_buyerInfo has_organisationInfo has_contactPerson has_name
=:
PurchaseOrder_BOD.relTo_Buyer.relTo_ContactPerson. hasPart_FirstName
PurchaseOrder_BOD.relTo_Buyer.relTo_ContactPerson. hasPart_Surname

SPLIT
order has_orderHeader has_buyerInfo has_organisationInfo has_contactPerson has_name INTO
PurchaseOrder_BOD.relTo_Buyer.relTo_ContactPerson. hasPart_FirstName
PurchaseOrder_BOD.relTo_Buyer.relTo_ContactPerson. hasPart_Surname

Forward Transf Rule

SEPARATOR blankspace
Reconciliation execution on a document instance
Reconciliation execution process

- Actual document reconciliation from A to B is performed by Ares, applying the previous defined Transformation Rules
- Two transformation:
 - **Forward**, from the A format into the Ontology format (FWD rules)
 - **Backward**, from the Ontology format into the B format (BWD rules)
An example of forward transformation

SPLIT
order.has_orderHeader.has_buyerInfo.has_organisationInfo.has_contactPerson.has_name
INTO
PurchaseOrder_BOD.relTo_Buyer.relTo_ContactPerson.hasPart_FirstName
PurchaseOrder_BOD.relTo_Buyer.relTo_ContactPerson.hasPart_Surname
SEPARATOR blankspace

An instance of the EADS order

```xml
<ai:rdf:ID="ex_AIDIMA_order_1">
  <ai:has_orderHeader>
    <ai:orderHeader rdf:ID="ordHea_ID1">
      <ai:has_buyerInfo>
        <ai:buyerInfo rdf:ID="buyInf_ID1">
          <ai:has_organisationInfo>
            <ai:organisationInfo rdf:ID="orgInf_ID1">
              <ai:has_contactPerson>
                <ai:contactPerson rdf:ID="conPer_ID1">
                  <ai:has_name>John Smith</ai:has_name>
                  </ai:contactPerson>
                </ai:contactPerson>
              </ai:organisationInfo>
            </ai:buyerInfo>
          </ai:has_organisationInfo>
        </ai:has_buyerInfo>
      </ai:has_orderHeader>
    </ai:orderHeader>
  </ai:has_orderHeader>
</ai:rdf:ID="ex_AIDIMA_order_1">
```

The EADS order in the Ontology format

```xml
<ro:PurchaseOrder_BOD rdf:ID="ex_AIDIMA_order_1">
  <ro:relTo_Buyer>
    <ro:Buyer_BA rdf:ID="buyInf_ID1">
      <ro:relTo_ContactPerson>
        <ro:ContactPerson_BA rdf:ID="conPer_ID1">
          <ro:hasPart_FirstName>John</ro:hasPart_FirstName>
          <ro:hasPart_Surname>Smith</ro:hasPart_Surname>
        </ro:ContactPerson_BA>
      </ro:relTo_ContactPerson>
    </ro:Buyer_BA>
  </ro:relTo_Buyer>
</ro:PurchaseOrder_BOD>
...
COIN innovative services for information interoperability
Motivations and objectives

Motivations

• Semantic annotation and building of transformation rules are mainly manual activities (error prone and time consuming)
• Two transformations at run time (forward and backward)

Objectives

• Improving and extending the semantic reconciliation suite in three directions:
  – **Semantic Declarative Mapping Discovery**: semi(automatic) support to semantic annotation
  – **Semantic Operational Mapping generation**: semi(automatic) support to semantic transformation rules generation
  – **Transformation rules fusion**: to optimize actual reconciliation phase
Semantic Declarative Mapping Discovery

Objective: automatically support the Semantic annotation definition (currently is mainly a manual activity)

Organized into 3 incremental steps

• Terminology-based mapping
  – using Web resources (e.g., Wordnet)
  – and similarity techniques for assessing similarity b/w terms

• Graph matching techniques for structure-based mapping with terminological mapping as input

• Semantic mismatch patterns (lossless and lossy) discovery
Objective: automatically support the TR building by reusing semantic annotation knowledge

• Semantic transformation rules patterns

• From Declarative to Operational Mapping
  – Correspondence between semantic mismatch patterns and transformation rules patterns
  – Automatic (partial) filling of TR templates

• From Abstract Operational Mapping to executable transformation rules
Transformation Rules Fusion

- Objective: to fuse sender’s forward and receiver’s backward rules in order to improve actual doc exchange
  - More straight forward reconciliation
  - Avoid useless transformations
- Semantic preserving fusion
  - Finite set of transformation patterns
- Resulting rules
  - still semantic rules (i.e., the ontology is still behind)
  - but no actual generation of intermediate document representation (ontology-based)
Example of Rules Fusion

STRUCTURE

GRANULARITY

FWD rule

BWD rule

Rules unification

NAMING

APP_A

buyer

contactInfo

fullName

address

buyer

contactInfo

firstName

lastname

address

buyer

name

address

APP_B

buyer

contactInfo

fullName

address

buyer

name

address

APP_A

buyer

contactInfo

fullName

address

buyer

name

address
Example of Rules Fusion

APP\textsubscript{A}

\textbf{product}

\textbf{size} \{small, medium, large\}

\textbf{PRECISION}

\textbf{FWD rule}

(lossy transf)

\textbf{Rules unification}

\textbf{IDENTITY}

\textbf{REC rule}

(lossless transf)

\textbf{APP\textsubscript{B}}

\textbf{product}

\textbf{size \{small, medium, large\}}

\textbf{sizeInMeter}

\textbf{PRECISION}

\textbf{BWD rule}

(lossy transf)
COIN information interoperability services

- Declarative Mappings (Sem Annot)
- Operational Mapping (Transf rules)
- Rules Patterns
- Executable Rules
- Executable Languages (e.g., Jena, Prolog, ATL)

Doc Schema

External Resources (i.e. Wordnet)

Semantic Mismatches Patterns

Abstract Syntax (e.g. RIF)

Operational Mapping Generation Service

Reference Ontology

Transformation Rules Fusion Service

Declarative Mapping Discovery Service

Declerative Mappings (Sem Annot)
Knowledge interoperability services
Objectives

Achieving balanced and harmonised Collaborative Network

- Modelling **Enterprise Semantic Profile** (ESP) focussing on Competencies and Skills (CS)
- Semantically enriching CS of each enterprise in the CN to:
  - Understand the overall CS of the CN
  - Identify CS gaps and complementarities
  - Define the “ideal” CS asset for the CN and identify the missing CS (e.g., to be acquired with new partners)

To this end, we need to develop:

- Semantic Supporting Services: **SSS**, necessary for KIS
- Knowledge Interop Services: **KIS**, to support the harmonisation of CS for better enterprise cooperation in the CN
CS Map
(gaps and overlapping)

We consider: CS of partners, ideal CS of CN, CS Missing Gap

CN = Collaborative Network
Beyond the State of the Art (1)

- **Objective**: achieve a unified method to model Enterprise capabilities (i.e., CS)
- **SotA**: Very complex and heterogeneous Enterprise Modelling (EM) frameworks (e.g., POP*, CIMOSA, GERAM, Zachman)
- **Innovation**: Describe CS by using ontology-based **Enterprise Semantic Profiles (ESP)**:
  - Extract CS from the human-oriented knowledge (filtering the technical documentation)
  - Map the filtered Enterprise Knowledge to the CSOnto, creating the **ontology-based ESP**
Beyond the State of the Art (2)

- **Objective:** ontology-based analysis of overlapping and complementary CS through *Semantic Similarity Reasoning*

- **SotA:** A plenty of semantic similarity methods (e.g., Lin, Resnik, ...) for comparing pairs of concepts, not semantic profiles

- **Innovation:** define an enterprise semantic matchmaking method for
  - Computing similarity b/w ESP
  - Identify gaps/overlapping among ESP
Knowledge EI Services

Semantic Supporting Services (SSS)
• Mass Ontology Building (from doc & Web 2.0)
• Enterprise Semantic Profiling
• Enterprise Semantic Matchmaking

Knowledge Interoperability Services (KIS)
• Semantic analysis of new partners entering CN
• Semantic analysis of enterprises’ CS in CN, to identify CS gap & overlapping
• Semantic enhancement of CN CS, by transferring the Knowledge acquired during VO activities / loss of competencies
Mass Ontology Building

Enterprise Digital Image (corpus of documents)

NLP techniques
Term-GlossX

Term Vectors

OntoBuild

CSPOnto (Partner ontology)

Web Glossaries, Thesauri, Ontologies

Domain Exp Ontology Eng

NLP = Natural Language Processing
Building a semantic-aware CS asset

- The CN CS asset is mainly derived from the partners’ asset
Enterp Semantic Profile Building

CN Target ontology (CSOnto)

CSPOnto (Partner ontology)

Web Resources

SemFilter

Enterprise SP
Enterprises Semantic Matchmaking
Semantic Collaborative Network

Enterpr Docs

Potential new CN partner

Enterpr Docs

CN partner

CN Semantic Profile

Enterpr Docs

CN partner

Enterpr Docs

Semantc CN

ESP

ESP

ESP

ESP

CSOnto
Conclusions

• Two kinds of semantic interoperability services for
  – Reconciliation of business documents for documents exchange between heterogeneous software applications
  – Management of enterprise competencies and skills for harmonization of collaborative networks