SP3 & Semantic Web Services

Overview

COIN General Assembly, Budapest, 05.05.2009
Srdjan Komazec, UIBK
Context

SP1 - Consortium Management

SP2 - Impact Creation

SP3 - Generic Service Platform

WP3.1 – Baseline Service Platform

WP3.2 – 3.4 Innovative Services

WP3.5 – Service Platform Integration and Testing

SP4 – Enterprise Collaboration Services

SP5 – Enterprise Interoperability Services

SP6 - Requirements and End-Users implementation Methods
Outline

• Objectives
• Deliverables
• Service Baseline Platform Assets
• Service Baseline Platform Architecture
• Results
• Web Service Execution Environment
Objectives of SP3

- Analysis of assets, requirements and design of the Baseline Service Platform based on
 - Semantically Enabled Service oriented Architecture (SESA)
 - Digital Business Ecosystem platform
 - Multi-Agent framework
 - TrustCoM platform
- Develop the Baseline Service Platform
- Provide an initial Scenario for the Platform
- Pave the road for SP3 Innovative Services
• Provide support for Web Service lifecycle adopting semantics (Web Service Modeling Ontology)
• Automation of
 – Service Discovery
 – Service Invocation
 – Service Ranking
 – Service Composition
 – …
• Web Service Modelling eXecution environment (WSMX) is the Reference Implementation
• Ongoing Standardization in OASIS SEE TC

Some fundamental characteristics are missing to allow its adoption in the Enterprise context
WSMX: what is missing

- **Support for Security**
 - Authorization/authentication
 - Trust
 - Encrypted Messaging

- **Support for Monitoring**
 - Service Quality Monitoring
 - Fault Monitoring

- **Scalable Grounding Mechanism**
 - Lifting and Lowering of XML to/from WSML
 - Easy deployment of grounding

- **Support for Pervasive and Scalable Model Repositories**
 - Distributed Repositories and Registries
 - Data replication
 - Model reuse and sharing

- **Support for Complex Business Interaction**
 - Business Process
 - Negotiation

TrustCom

DBE

Multi-Agent framework
Service Baseline Platform Architecture
Results

• WSMX Grounding
 – Decoupled solution based on SAWSDL and XSLT

• WSMX Monitoring
 – RDF storage for storing data regarding the service invocations
Results

• WSMX and P2P Repository Integration
 – SOAP based integration
 – P2P Repository is yet another WSMX Resource Manager implementation
 – Support for fail-safe operation
Results

• WSMX and Agent platform
 – SOAP based integration
 – WSMX delegates specific tasks to the Agent platform and vice versa
Results

• WSMX and Security Gateways
 – SOAP-based integration,
 – Service requesters, WSMX and service providers are shielded by the pairs for security gateways
WSMX Overview
Introduction

Relation to WSMO and WSML
Introduction

WSMX…

• ... is comprehensive software framework for runtime binding of service requesters and service providers,
• ... interprets service requester’s goal to
 – discover matching services,
 – select (if desired) the service that best fits,
 – provide data/process mediation (if required), and
 – make the service invocation,
• ... is reference implementation for WSMO,
• ... has a formal execution semantics, and
• ... is service oriented, event-based and has pluggable architecture
 – Open source implementation available through Source Forge,
 – based on microkernel design using technologies such as JMX.
Introduction

Design principles

• Service-oriented principle
 – Service reusability, loose coupling, abstraction, composability, autonomy, discoverability,

• Semantic Principle
 – Rich and formal description of information and behavioral models enabling automation of certain tasks by means of logical reasoning,

• Problem-solving principle
 – Goal-based discovery and invocation of services, and

• Distributed principle
 – Executing process across a number of components/services over the network, thus promoting scalability and quality of process.
Lifecycle

1. Discovery - determines usable services for a request,
2. Composition - combine services to achieve a goal,
3. Selection - chooses most appropriate service among the available ones,
4. Mediation - solves mismatches (data, protocol, process) hampering interoperation,
5. Choreography – interactions and processes between the service providers and clients,
6. Grounding – lifting and lowering between the semantic and syntactic data representations, and
7. Invocation - invokes Web service following programmatic conventions.
WSMX
Current middleware status
Execution Semantics
Execution Semantics

• Formal description of the operational behavior of the system in terms of computational steps
 – Greater flexibility in SESA implementations,
 – Foundations for model testing,
 – Executable representation, and
 – Improved model understanding among humans.

• Mandatory execution semantics
 – Goal-Based Web Service Discovery
 – Web Service Invocation
 – Goal-Based Service Execution
Execution Semantics
Goal-Based Web Service Discovery

Illustration by larger example
The goal is to discover a suitable solution for the transportation of a package with defined size and weight.

Candidate Web Services have different constraints regarding the transportation destinations, package size and weight acceptance, as well as pricing schemas.

For more information visit:
I want to have my package shipped from CA, USA to Tunis, Africa size (7/6/4), weight 1 lbs, the cheaper the better.

```
wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"

goal GoalA1

capability GoalA1Capability
  postcondition
    definedBy
      ( [sop#price hasValue ?price] memberOf
        sop#PriceQuoteResp
        and sop#isShipped(shipmentOrderReq) ).

interface GoalA1Interface
choreography GoalA1Choreography
  stateSignature GoalA1StateSignature

  in sop#ShipmentOrderReq
  out sop#ShipmentOrderResp

transitionRules GoalA1TransitionRules

  forall {?request} with
    (?request memberOf sop#ShipmentOrderReq)
    do
      add(_#1 memberOf sop#ShipmentOrderResp)
    endForall

ontology GoalRequest

instance shipmentOrderReq memberOf sop#ShipmentOrderReq
  sop#from hasValue soi#MoonContactInfo
  sop#shipmentDate hasValue soi#shipmentDate1
  sop#package hasValue package
  sop#to hasValue soi#SzyslakContactInfo

instance package memberOf so#Package
  so#quantity hasValue 1
  so#length hasValue 7.0
  so#width hasValue 6.0
  so#height hasValue 4.0
  so#weight hasValue 1.0

instance shipmentDate1 memberOf so#ShipmentDate
  so#earliest hasValue "2009-01-21T13:00:00.046Z"
  so#latest hasValue "2009-01-22T13:00:00.046Z"
```
Illustration by larger example

AchieveGoal execution semantics
Goal expressed in WSML is sent to the WSMX Entry Point.
Illustration by larger example
AchieveGoal execution semantics

Communication Manager instantiates AchieveGoal Execution Semantics
Discovery is employed in order to find suitable Web Service. Web Service may be invoked in order to discover service availability.

Discovery consults appropriate ontologies and Web Service descriptions.
List of candidate Web Services is ranked and best" solution is selected

AchieveGoal execution semantics
Requester and provider choreographies are instantiated and processed.

Invocation of Web Service occurs.
choreography WSMullerShipmentOrderChoreography
stateSignature WSMullerShipmentOrderStateSignature

in sop#ShipmentOrderReq withGrounding {
 _"http://sws-challenge.org/shipper/v2/muller.wsdl#wsdl.interfaceMessageReference(muller/ShipmentOrder/in0)"
}
in so#ContactInfo
in so#ShipmentDate
in so#Package
in so#Address
out sop#ShipmentOrderResp

transitionRules WSMullerShipmentOrderTransitionRules
forall {?request} with
 (?request memberOf sop#ShipmentOrderReq)
do
 add(_#1 memberOf sop#ShipmentOrderResp)
delete(?request memberOf sop#ShipmentOrderReq)
endForall

<shipmentOrderReq(soi#MoonContactInfo, soi#shipmentDate1, package, soi#SzyslakContactInfo),
 package(1, 7.0, 6.0, 4.0, 1.0),
 shipmentDate1("2009-01-21T13:00:00.046Z", "2009-01-22T13:00:00.046Z")>

<shipmentOrderResp("2009-01-21T15:00:00.046Z", 65.03),
 package(1, 7.0, 6.0, 4.0, 1.0),
 shipmentDate1("2009-01-21T13:00:00.046Z", "2009-01-22T13:00:00.046Z")>
Result is returned to the client in the form of WSML message

AchieveGoal execution semantics
Questions