Lecture on

Web services retrieval

Pierluigi PLEBANI

Dipartimento di Elettronica ed Informazione - Politecnico di Milano
plebani@elet.polimi.it
Who I am

- Assistant Professor at Politecnico di Milano
- I belong to the Information System group at Dipartimento di Elettronica ed Informazione at Politecnico di Milano
- I got both my master degree and my Ph.D. on Information Engineering at Politecnico di Milano in 2000 and 2005, respectively
<table>
<thead>
<tr>
<th>Theme</th>
<th>Research goals</th>
<th>Main achievements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design if e-services and workflows in cooperative IS</td>
<td>• Design and execution of adaptive process-based information systems</td>
<td>• Service composition algorithms based on QoS</td>
</tr>
<tr>
<td>Design of multi channel IS</td>
<td>• Requirements posed by micro and mobile environments</td>
<td>• WS Selection criteria</td>
</tr>
<tr>
<td>Cost oriented design of IT infrastructures</td>
<td>• Identification of variables for optimal configuration of distributed systems</td>
<td>• PAWS</td>
</tr>
<tr>
<td>Information quality</td>
<td>• Assessment of time dependent qualities</td>
<td>• MAS and μBPEL</td>
</tr>
<tr>
<td></td>
<td>• Information quality improvement methods</td>
<td>• Context management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Architectural design based on cost minimization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cost and quality based negotiation algorithms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• New time-dependent IQ evaluation criteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Proposal of new cost-based IQ methodology</td>
</tr>
</tbody>
</table>
Before starting ...

- Web service retrieval is only the last problem
- We have had:
 - plumber retrieval
 - data retrieval
 - document retrieval
 - software component retrieval
 - ... and now Web service retrieval
- We consider discovery and retrieval as synonyms
... a look at the real world

- Once upon a time...
 - Friends of mine
 - Friends of friends of mine
 - ... (Friends of)\(^n\) mine with 1 \(\leq n \leq 6\)

- Advertising rules!
 - White pages
 - Yellow pages

- e-Advertising rules!
 - http://www.whitepages.com
 - http://www.yellowpages.com
Who, What, Where, When, Why, and How

Lecture on “Web services retrieval”
Pierluigi Plebani
March, 6th, 2009
Who does retrieve Web services?

- Web services retrieval is one of the fundamental steps in SOA
- Final users need to retrieve Web services
- We need to consider Web service providers as well
What do we retrieve? 1/2

- We need to find a Web service (obviously)
- But, which one? The one:
 - able to perform what we need
 - accessible in a way we need
 - working in a way we need
What do we retrieve? 2/2

- A shared model for both Web service providers and Web service users is required
- This model must consider:
 - functionalities
 - conversation
 - quality
- Lot of specifications are available today:
 - WSDL
 - WS-CDL
 - WS-BPEL
 - WS-Policy
 - ... and many others
Where do we retrieve Web services?

- All the information should be collected and stored in well known places:
 - centralized solution
 - distributed or peer-to-peer solution

- Who has the ownership on this information?
 - registry
 - repository
When do we retrieve Web services?

- At design-time
 - we can code the client-side
- At deployment-time
 - we need a declarative model
- At run-time
 - we need... something
Why do we retrieve Web services?

- Only for a single invocation
- For building a partnership
- As a part of my application
- As the whole application
How do we retrieve Web services? 1/2

- \((\text{Friends of })^n\) mine with \(1 \leq n \leq 6\)
- Browsing the Web (XMethods, SALCentral (?))
- Googling
- White pages
- Yellow pages
- Are we re-inventing the wheel?
 - if you think so, try to describe your plumber with WSDL
 - or to call him by SOAP
How do we retrieve Web services? 2/2
How do we retrieve Web services? 2/2

Available services
How do we retrieve Web services? 2/2

Request

Available services
How do we retrieve Web services? 2/2

- Request
- Matchmaking
- Available services
How do we retrieve Web services? 2/2

Request

Matchmaking

Available services

Negotiation

Selection

Ranking
How do we retrieve Web services? 2/2

- Request
- Matchmaking
- Available services
- Negotiation
- Ranking
- Selection
- Clustering
State of the Art

Lecture on “Web services retrieval”
Pierluigi Plebani
March, 6th, 2009
A possible roadmap

from E. Klein, A. Bernstein, Toward High-Precision Service Retrieval, IEEE Internet Computing, Jan-Feb 2004
A possible roadmap

from E. Klein, A. Bernstein, Toward High-Precision Service Retrieval,
IEEE Internet Computing, Jan-Feb 2004

Google Style
A possible roadmap

from E. Klein, A. Bernstein, Toward High-Precision Service Retrieval, IEEE Internet Computing, Jan-Feb 2004
A possible roadmap

Based on ad-hoc ontology classifying documents

Attribute-values pair e.g., UDDI

Google Style

from E. Klein, A. Bernstein, Toward High-Precision Service Retrieval, IEEE Internet Computing, Jan-Feb 2004
A possible roadmap

Describe services as interlinked subactivities
Easy to describe and general purpose

Attribute-values pair
e.g., UDDI

Based on ad-hoc ontology classifying documents

from E. Klein, A. Bernstein, Toward High-Precision Service Retrieval, IEEE Internet Computing, Jan-Feb 2004
A possible roadmap

Modeling query and description with logics. Unfeasible as a general purpose solution

Describe services as interlinked subactivities. Easy to describe and general purpose

Attribute-values pair e.g., UDDI

Based on ad-hoc ontology classifying documents

Google Style

from E. Klein, A. Bernstein, Toward High-Precision Service Retrieval, IEEE Internet Computing, Jan-Feb 2004
A possible roadmap

from E. Klein, A. Bernstein, Toward High-Precision Service Retrieval, IEEE Internet Computing, Jan-Feb 2004
Web service description

- Some current useful specifications
 - WSDL
 - SAWSDL (formerly WSDL-S)
 - OWL-S (formerly DAML-S)
 - WSMO
 - WS-Policy
 - WSOL
 - WS-CDL
 - WS-BPEL
 - ...

- How much Web service description costs?
Some of the current approaches

- Interface matching
 - Stroulia and Yang, Woogle (WSDL)

- Semantic matching
 - OWL-S MM, WSMO MM

- Hybrid matching
 - Lumina (SAWSDL)

- Quality driven matching
 - WSOI (WSOL), UDDIe (Proprietary Language)

- Hybrid+Quality matching
 - URBE (WSDL, SAWSDL, WS-Policy)

- What about behavior?
• Proposed for reusable components

• Introduces concepts useful and used in Web service retrieval

• Two kinds of similarity evaluations:
 ▶ signature matching
 ▶ specification matching

• Various degrees of similarity
 ▶ exact-match
 ▶ several relaxed matches
• Signature matching: based on data type analysis
 - Exact match
 - Partial match (generalized match, specialized match)
 - Relax match (generalized relax match, specialized relax match)

• Specification matching: based on pre- and post-condition analysis
 - Exact match
 - Plug-in match
 - Plug-in post match
 - Guarded post match
Interface matching: Stroulia and Yang

- Two main aspects
 - structural similarity based only on data type analysis (casting)
 - semantic similarity based on operations and parameters names
- This approach also considers the documentation field
 - relies on IR approach (tf/idf)
- Term similarity evaluation is based on Wordnet
Interface matching: Woogle

- Proposed by Dong et al. at VLDB 2004
 - now it seems to be abandoned
- Operation-based query
- Based on parameter names clustering
 - parameters tend to express the same concept if they occur together often
- Operation matching is based on the defined clusters
- Tool available on line
 http://data.cs.washington.edu/webService/
OWL-S and WSMO Matchmaking

- Web services are semantically described using OWL-S or WSMO.
- Matchmakers take advantage of these semantic descriptions.
- Matchmaking relates to reasoning on ontology:
 - Concepts composing web services are related.
 - The more strict is the relationship the more similar are the service.
- Classes of similarities:
 - Exact
 - Plug-in
 - Subsumes
 - Fail
Hybrid approaches

- Considers both interfaces and semantics
- Usually based on annotations
- SAWSDL extends WSDL with annotations offering semantic description about operations, messages, parameters
- Good balance between:
 - expressiveness
 - feasibility
- What about the matchmaker?
URBE (Uddi Registry By Example)

Seminar on “Web services retrieval”
Pierluigi Plebani
April, 11th, 2007
Main features of URBE

- Interface matching
- Semantic matching
- Quality driven matching
- So far:
 - we have studied the first and second points
 - we are going to validate the third point
- The main goal is: retrieval for substitutability

Details in: P. Plebani and B. Pernici, URBE: Web service Retrieval based on Similarity Evaluation. IEEE Transaction on Knowledge and Data Engineering, ISSN: 1041-4347, to appear (now available on line)
URBE in details

• Uddi Registry By Example
 ▶ is compliant with UDDI (publishing, searching, data models)
 ▶ performs content based query based
 - user submits a WSDL expressing the requirements
 - URBE returns a list of Web services close to the request

• Similarity function fSim is the core of URBE
 ▶ semantic analysis
 ▶ structural analysis
fSim properties

- Given:
 - σ_q as a query
 - σ_p as an available service

- fSim: $(\sigma_q, \sigma_p) \rightarrow [0..1]$
 - $fSim(\sigma_q, \sigma_q) = 1$
 - fSim is not symmetric
 - fSim relies on a linear programming model

- The value returned by fSim is used to rank services
fSim components

- fSim compares the overall services description by using:
 - opSim that compares the operations description by using:
 - parSim that compares the parameters description
Adopted linear problem

- Assignment in bipartite graphs which compares:
 - terms, operation, services

\[
\begin{align*}
\text{Q} & & \text{P} \\
\text{Q.1} & & \max Sim(f, Q, P) = \\
\text{Q.2} & & \frac{1}{|Q|} \cdot \max \sum_{i \in I} f(q_i, p_j) \cdot x_{i,j} \\
\text{Q.3} & & \sum_{j \in J} x_{i,j} \leq 1 \quad \forall i \in I \\
& & \sum_{i \in I} x_{i,j} \leq 1 \quad \forall j \in J \\
& & I = [1..|Q|], \quad J = [1..|P|]
\end{align*}
\]
Adopted linear problem

- Assignment in bipartite graphs which compares:
 - terms, operation, services

$$\text{max Sim}(f, Q, P) = \frac{1}{|Q|} \cdot \max \sum_{i \in I} f(q_i, p_j) \cdot x_{i,j}$$

$$\sum_{j \in J} x_{i,j} \leq 1 \quad \forall i \in I$$

$$\sum_{i \in I} x_{i,j} \leq 1 \quad \forall j \in J$$

$I = [1..|Q|], \quad J = [1..|P|]$
Adopted linear problem

- Assignment in bipartite graphs which compares:
 - terms, operation, services

\[
\max \text{Sim}(f, Q, P) = \frac{1}{|Q|} \cdot \max \sum_{i \in I} f(q_i, p_j) \cdot x_{i,j}
\]

\[
\sum_{j \in J} x_{i,j} \leq 1 \quad \forall i \in I
\]

\[
\sum_{i \in I} x_{i,j} \leq 1 \quad \forall j \in J
\]

\[
I = [1..|Q|], \quad J = [1..|P|]
\]
Adopted linear problem

- Assignment in bipartite graphs which compares:
 - terms, operation, services

\[
\text{maxSim}(f, Q, P) = \frac{1}{|Q|} \cdot \max \sum_{i \in I} f(q_i, p_j) \cdot x_{i,j}
\]

\[
\sum_{j \in J} x_{i,j} \leq 1 \quad \forall i \in I
\]

\[
\sum_{i \in I} x_{i,j} \leq 1 \quad \forall j \in J
\]

\[
I = [1..|Q|], \quad J = [1..|P|]
\]
Adopted linear problem

• Assignment in bipartite graphs which compares:
 - terms, operation, services

\[
\text{max} \, \text{Sim}(f, Q, P) = \frac{1}{|Q|} \cdot \max \sum_{i \in I} f(q_i, p_j) \cdot x_{i,j}
\]

\[
\sum_{j \in J} x_{i,j} \leq 1 \quad \forall i \in I
\]

\[
\sum_{i \in I} x_{i,j} \leq 1 \quad \forall j \in J
\]

\[
I = [1..|Q|], \quad J = [1..|P|]
\]

\[
\text{opt}(\text{sim}(Q, P)) = \frac{1.0 + 0.7 + 1.0}{3} = 2.7 / 3 = 0.9
\]
Names similarity

- We assume that the WSDL is automatically generated
- Names reflect coding conventions
- Stemming and tokenization are required before comparing names
 - getData, currencyExchange

<table>
<thead>
<tr>
<th>Rule</th>
<th>Original term</th>
<th>Tokenized version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case change</td>
<td>currencyExchange</td>
<td>currency, exchange</td>
</tr>
<tr>
<td>Case change</td>
<td>SendSMSTo</td>
<td>send, sms, to</td>
</tr>
<tr>
<td>Suffix numbers elimination</td>
<td>currency1</td>
<td>currency</td>
</tr>
<tr>
<td>Underscore separator</td>
<td>currency_exchange</td>
<td>currency, exchange</td>
</tr>
</tbody>
</table>

- Some terms have less meaning
 - body, result, parameters
DataType similarity 1/2

- Data types are grouped into categories [Stroulia and Yang]

<table>
<thead>
<tr>
<th>Group</th>
<th>Simple and derived XSD Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer group</td>
<td>integer, byte, short, long</td>
</tr>
<tr>
<td>Real group</td>
<td>float, double, decimal</td>
</tr>
<tr>
<td>String group</td>
<td>string, normalizedString</td>
</tr>
<tr>
<td>Date group</td>
<td>date, dateTime, duration, gDay, gMonth, gMonthDay, gYear, gYearMonth, time</td>
</tr>
<tr>
<td>Boolean group</td>
<td>boolean</td>
</tr>
</tbody>
</table>

- `dataTypeSim` is inversely proportional to the information loss if we cast from `dt_q` to `dt_p`
DataType similarity 2/2

- Information loss is quantified according to the following reference scale

<table>
<thead>
<tr>
<th>Information loss</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>data types are totally incompatible</td>
<td>1.0</td>
</tr>
<tr>
<td>in some rare case casting does not produce information loss</td>
<td>0.7</td>
</tr>
<tr>
<td>information loss happens by casting</td>
<td>0.5</td>
</tr>
<tr>
<td>often casting does not produce information loss</td>
<td>0.3</td>
</tr>
<tr>
<td>data types are the same</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Semantic extension

- Recall can be improved if SAWSDL description is available
- In this case name similarity is based on the annotations
 - Annotation refers to concept in the domain-specific ontology
 - Similarity evaluation depends on the nature of the annotation (it could be either class or property)
- Annotations similarity results
 - More precise than names similarity
 - Faster to calculate
pathSim

- both \(a_q\) and \(a_p\) are classes, or
- both \(a_q\) and \(a_p\) are properties

\[
pathSim(a_q, a_p) = \begin{cases}
0 & \text{if no subsumption path exists} \\
\frac{1}{(\text{pathlength}(a_q, a_p) + 1)} & \text{otherwise}
\end{cases}
\]
classPropSim and propClassSim

- a_q is a class
- a_p is a property

$$\text{classPropSim}(a_q, a_p) = \begin{cases} \frac{1}{\#\text{properties of } a_q} & \text{if } a_q \equiv \text{domain}(a_p) \\ 0 & \text{otherwise} \end{cases}$$

- a_q is a property
- a_p is a class

$$\text{propClassSim}(a_q, a_p) = \begin{cases} 1 & \text{if } a_q \equiv \text{domain}(a_p) \\ 0 & \text{otherwise} \end{cases}$$
Benchmark

- Benchmark has been obtained from the OWL-S service retrieval test collection (OWL-S TC)
 - 570 Web services
 - 32 test queries

- Machine
 - IBM xSeries, 2 CPU Intel XEON 3GHz, 2 GByte RAM
Evaluation parameters

- Precision = \#relevant returned / \#returned
- Recall = \#relevant returned / \#relevant in the corpus
- Top-5 = precision when 5 items are returned
- Top-10 = precision when 10 items are returned
- R-Precision = precision when the number of items returned corresponds to the number of relevant items
- Average Precision (AP) = precision calculated after a relevant item is returned
Results: precision/recall graph
Results: precision/recall graph

Precision / Recall graph comparison

- URBE-S
- URBE
- Syeda
- Woogle
- OWLS-MX
Semantic Service Selection Contest

Recall/Precision (macro-averaged)

- SAWSDL-M3 (hybrid, Cos)
- URBE

Precision vs. Recall graph showing two lines representing the performance of SAWSDL-M3 and URBE.
Concluding remarks

Lecture on “Web services retrieval”
Pierluigi Plebani
March, 6th, 2009
My standpoint

- Quality and negotiation matchmaking represent, at this stage, the biggest open issues
- About the functional matchmaking is matter of computation time
- Web service registry managing should be deeply investigated as well
- Semantic based approaches suffer of the need of services semantically described
- Web services retrieval must be, first of all, usable!
 - Holy grail: “I would like a service able to...”
The Software Services and Systems Network

S-CUBE service vision

S-CUBE focuses on the new-generation of services mainly on:
• Adaptive and Flexible execution
• Human Computing Interaction
• Context awareness
• Quality and SLA definition

These aspects will be investigated from BPM down to the infrastructural perspective.

Service engineering and governance hold a key role in the S-CUBE vision.

http://www.s-cube-network.eu/

S–Cube is funded by the European Community's Seventh Framework Programme FP7/2007–2013 under Objective 1.2 'Services and Software Architectures, Infrastructures and Engineering'
Contacts

Pierluigi PLEBANI
Dipartimento di Elettronica ed Informazione
Politecnico di Milano
Via Ponzio 34/5
20133 Milano - Italy
plebani@elet.polimi.it
http://home.dei.polimi.it/plebani