Bayesian model selection: Mechanistic models of Erk MAP kinase phosphorylation dynamics

Tina Toni,
Supervisor: Prof. Michael Stumpf

Theoretical Systems Biology Group,
Imperial College London

LICSB, 01/04/2009
Motivation

- Post-translational modification important process
- 30% of all proteins in any eukaryotic cell phosphorylated at any time \(^2\)
- 500 different protein kinases in human genome \(^1\)

\(^1\) (Manning et al., Science, 2002)

\(^2\) (Mann et al., Trends Biotechnology, 2002)
Outline

1. Data

2. Phosphorylation models

3. Model selection
 - Existing approaches
 - ABC SMC Bayesian model selection algorithm

4. Results
High throughput \textit{in vivo} data of Erk signaling pathway

(Sasagawa et al., Nature Cell Biology, 2005)
High throughput *in vivo* data of Erk signaling pathway

1. Individual cell ppMek vs ppErk data

2. Averaged time course data

- ppMek = active MAPKK
- ppErk = Mpp

How can we use these data to study the phosphorylation mechanisms of Erk by ppMek?
Dual phosphorylation mechanisms

Figure 1: Distributive phosphorylation.

Figure 2: Processive phosphorylation.
Dual phosphorylation mechanisms

Distributive (disassociation)

\[
M + \text{MAPKK} \xrightarrow{k_1} \text{M} \cdot \text{MAPKK} \xrightarrow{k_2} \text{Mp} + \text{MAPKK}
\]

\[
\text{Mp} + \text{MAPKK} \xrightarrow{k_3} \text{Mp} \cdot \text{MAPKK} \xrightarrow{k_4} \text{Mpp} + \text{MAPKK}
\]

Processive (bind and slide)

\[
M + \text{MAPKK} \xrightarrow{k_1} \text{M} \cdot \text{MAPKK} \xrightarrow{k_2} \text{Mp} \cdot \text{MAPKK} \xrightarrow{k_4} \text{Mpp} + \text{MAPKK}
\]
Question

- *In vitro* phosphorylation MAPK is distributive (*Burack 1997, Ferrel 1997*).
- *In vitro* de-phosphorylation MAPK is distributive (*Zhao 2001*).
- Is it the same *in vivo*? Cannot study phosphorylation and dephosphorylation separately.
Question

- *In vitro* phosphorylation MAPK is distributive (*Burack 1997, Ferrel 1997*).
- *In vitro* de-phosphorylation MAPK is distributive (*Zhao 2001*).
- Is it the same *in vivo*? Cannot study phosphorylation and dephosphorylation separately.

<table>
<thead>
<tr>
<th>Phosphorylation</th>
<th>Dephosphorylation</th>
<th>num. parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-D</td>
<td>distributive</td>
<td>distributive</td>
</tr>
<tr>
<td>P-D</td>
<td>processive</td>
<td>distributive</td>
</tr>
<tr>
<td>D-P</td>
<td>distributive</td>
<td>processive</td>
</tr>
<tr>
<td>P-P</td>
<td>processive</td>
<td>processive</td>
</tr>
</tbody>
</table>
Individual cell data plots

What does the slope of the fitted Hill curve tell us about phosphorylation?
In vitro:
slope = 1: processive
slope = 2: distributive
What does the slope of the fitted Hill curve tell us about phosphorylation?
In vitro:
slope = 1: processive
slope = 2: distributive

Our guess:
slope = 1: P-P, P-D
slope = 2: D-P, D-D

Result:
slope = 1: P-P, P-D, D-P
slope = 2: D-D
Steady state invariants, Gunawardena

A) D-D
B) D-P
C) P-D
D) P-P

(Gunawardena, Biophysical Journal, 2008)
Steady state invariants, Gunawardena

(A) D-D
(B) D-P
(C) P-D
(D) P-P

Need:
steady state measurements of M, Mp, Mpp

(Gunawardena, Biophysical Journal, 2008)
Bayesian model selection

![Diagram showing candidate models: M1, M2, M3, M4, M5, M6.]

Bayes factor

\[
BF_{i,j} = \frac{P(D|M_i)}{P(D|M_j)} = \frac{P(M_i|D)P(M_j)}{P(M_j|D)P(M_i)}
\]

\[
P(M_i|D) \propto \int_{\theta_i} P(M_i, \theta_i|D)P(M_i)P(\theta_i)d\theta_i
\]
Bayesian model selection

Bayes factor

\[BF_{i,j} = \frac{P(D|M_i)}{P(D|M_j)} = \frac{P(M_i|D)P(M_j)}{P(M_j|D)P(M_i)} \]

\[P(M_i|D) \propto \int_{\theta_i} P(M_i, \theta_i|D)P(M_i)P(\theta_i)d\theta_i \]
ABC framework for estimation of $P(\theta|D)$

R1 Sample θ^c from $P(\theta)$.
R2 Simulate a data set D^c from the model with θ^c.
R3 If $\text{dist}(D, D^c) \leq \epsilon$, accept θ^c, otherwise reject.
R4 Return to R1.
ABC framework for estimation of $P(\theta|D)$

R1 Sample θ^c from $P(\theta)$.
R2 Simulate a data set D^c from the model with θ^c.
R3 If $\text{dist}(D, D^c) \leq \epsilon$, accept θ^c, otherwise reject.
R4 Return to R1.
ABC framework for estimation of $P(\theta|D)$

R1 Sample θ^c from $P(\theta)$.
R2 Simulate a data set D^c from the model with θ^c.
R3 If $\text{dist}(D, D^c) \leq \epsilon$, accept θ^c, otherwise reject.
R4 Return to R1.
ABC framework for estimation of $P(\theta|D)$

R1 Sample θ^c from $P(\theta)$.
R2 Simulate a data set D^c from the model with θ^c.
R3 If $\text{dist}(D, D^c) \leq \epsilon$, accept θ^c, otherwise reject.
R4 Return to R1.

Prior
$P(\theta)$

Posterior
$P(\theta|D)$

time
ABC framework for estimation of $P(\theta|D)$

1. Sample θ^c from $P(\theta)$.
2. Simulate a data set D^c from the model with θ^c.
3. If $\text{dist}(D, D^c) \leq \epsilon$, accept θ^c, otherwise reject.
4. Return to R1.
ABC framework for estimation of $P(\theta|D)$

R1 Sample θ^c from $P(\theta)$.
R2 Simulate a data set D^c from the model with θ^c.
R3 If $\text{dist}(D, D^c) \leq \epsilon$, accept θ^c, otherwise reject.
R4 Return to R1.
ABC framework for estimation of $P(\theta|D)$

R1 Sample θ^c from $P(\theta)$.

R2 Simulate a data set D^c from the model with θ^c.

R3 If $\text{dist}(D, D^c) \leq \epsilon$, accept θ^c, otherwise reject.

R4 Return to R1.
ABC framework for estimation of $P(\theta|D)$

R1 Sample θ^c from $P(\theta)$.
R2 Simulate a data set D^c from the model with θ^c.
R3 If $\text{dist}(D, D^c) \leq \epsilon$, accept θ^c, otherwise reject.
R4 Return to R1.
ABC framework for estimation of $P(\theta|D)$

R1 Sample θ^c from $P(\theta)$.
R2 Simulate a data set D^c from the model with θ^c.
R3 If $\text{dist}(D, D^c) \leq \epsilon$, accept θ^c, otherwise reject.
R4 Return to R1.
ABC framework for estimation of $P(\theta|D)$

R1 Sample θ^c from $P(\theta)$.
R2 Simulate a data set D^c from the model with θ^c.
R3 If $\text{dist}(D, D^c) \leq \epsilon$, accept θ^c, otherwise reject.
R4 Return to R1.

Prior $P(\theta)$

Posterior $P(\theta|D)$
ABC SMC for estimation of $P(\theta | D)$

(Toni et al., 2008, Journal of Royal Society Interface)
Bayesian model selection with ABC SMC

We know

\[\text{ABC SMC \ obtain} \quad P(\theta|D) \]

ABC Model Selection

- Include model \(\mathcal{M} \) as an extra parameter: \((\mathcal{M}, \theta_1, \ldots, \theta_M)\).
- Do ABC SMC to get posterior \(P(\mathcal{M}, \theta_1, \ldots, \theta_M|D) \).
- Marginalize to obtain \(P(\mathcal{M}|D) \).
- Calculate Bayes factor

\[
BF_{i,j} = \frac{P(M_i|D)P(M_j)}{P(M_j|D)P(M_i)}
\]
Gaussian Process regression and fitting

MAPKK data: input to models

Mpp data: for fitting
Model selection results

Marginal posterior distribution $P(M|D)$

D-D P-P D-P P-D
Future work

Averaged data
- Study dependence on Gaussian Process regression, priors.

Population data
- Extra information contained in population vs. averaged data.
- Adaptation of ABC SMC algorithm for population data.
- Main source of variability.
Acknowledgements

- Systems Biology Lab, University of Tokyo
- Dr. Yu-ichi Ozaki
- Dr. Shinsuke Uda
- Prof. Shinya Kuroda

- Prof. Michael Stumpf
- Paul Kirk
- Theoretical Systems Biology group, Imperial College

- Funding: MRC, Division of Molecular Biosciences (Imperial College), Slovenian Academy of Sciences and Arts
Thank you