Detecting Evolutionary Inter-Gene Heterogeneity in *Borrelia burgdorferi*

ELISA LOZA
Department of Mathematical Sciences
University of Bath
Contents

1. What is a *phylogenetic analysis*?
Contents

1. What is a *phylogenetic analysis*?

2. Conventional (homogeneous) model for likelihood-based phylogenetic inference.
1. What is a *phylogenetic analysis*?

2. Conventional (homogeneous) model for likelihood-based phylogenetic inference.

3. Downsides of the homogeneous model.
Contents

1. What is a phylogenetic analysis?

2. Conventional (homogeneous) model for likelihood-based phylogenetic inference.

3. Downsides of the homogeneous model.

4. An improved model that accounts for heterogeneity.
1. What is a phylogenetic analysis?

2. Conventional (homogeneous) model for likelihood-based phylogenetic inference.

3. Downsides of the homogeneous model.

4. An improved model that accounts for heterogeneity.

5. Applications to Borrelia burgdorferi data.
Phylogenetic likelihood methods

• Phylogenetics is the reconstruction and analysis of trees and other parameters to describe and understand the evolution of organisms.
Phylogenetic likelihood methods

- Phylogenetics is the reconstruction and analysis of trees and other parameters to describe and understand the evolution of organisms.

- Likelihood-based phylogenetic analyses start by observing the aligned DNA sequences of s organisms:

 TCAAGCTATACCCGAT...
 TATACCAGCTATAGCT...
 CAAAGCTATACCCGAT...
 CAAAGCTATACCCGAT...
 ...
The homogeneous model

- The homogeneous model for independent observations $y_1 = (T,T,C,C)'$, $y_2 = (C,A,A,A)'$, …, $y_n = (T,A,A,T)'$, is:

$$y_i \sim f(\cdot | \lambda, t, Q) \text{ independently for } i = 1, 2, \ldots, n$$
Model parameters

\[y_i \sim f(\cdot | \chi, t, Q) \text{ independently for } i = 1, 2, \ldots, n \]
Model parameters

\[y_i \sim f(\cdot \mid x, t, Q) \] independently for \(i = 1, 2, \ldots, n \)

- A bifurcating tree with \(s \) leaves,
Model parameters

\[y_i \sim f(\cdot | \chi, t, Q) \quad \text{independently for } i = 1, 2, \ldots, n \]

- A bifurcating tree with \(s \) leaves,

- A set of positive real-valued branch lengths,

\[t = (t_1, t_2, \ldots, t_5) \]
Model parameters

\[y_i \sim f(\cdot \mid \mathbf{X}, \mathbf{t}, Q) \quad \text{independently for } i = 1, 2, \ldots, n \]

- A bifurcating tree with \(s \) leaves,

- A set of positive real-valued branch lengths,
 \[\mathbf{t} = (t_1, t_2, \ldots, t_5) \]

- A rate matrix \(Q \) specifying a Markov process of character substitution along
DNA data may be not homogeneous
Borrelia burgdorferi

• *Borrelia burgdorferi* is one of the bacterial species responsible for Lyme disease.
Borrelia burgdorferi

• *Borrelia burgdorferi* is one of the bacterial species responsible for Lyme disease.

• To fully understand the disease, it is crucial to unveil the evolutionary properties of its genetic variants (strains).
Borrelia burgdorferi

- *Borrelia burgdorferi* is one of the bacterial species responsible for Lyme disease.

- To fully understand the disease, it is crucial to unveil the evolutionary properties of its genetic variants (strains).

- Phylogenetic analysis is an essential tool.
Identification of *B. burgdorferi* strains
Identification of *B. burgdorferi* strains
Identification of *B. burgdorferi* strains
Are the loci congruent in evolution, such that valid inferences can be made under a homogeneous phylogenetic model?
The Q + t mixture model

- Finite mixture models provide a natural way to model heterogeneous data.

\[f(\cdot | x, t, Q) \]
The $Q + t$ mixture model

- Finite mixture models provide a natural way to model heterogeneous data.

$$f(\cdot | \lambda, t, Q) + f(\cdot | \lambda, t, Q)$$
The Q + t mixture model

- Finite mixture models provide a natural way to model heterogeneous data.

\[f(\cdot | \lambda, t, Q) + f(\cdot | \lambda, t, Q) + \ldots + f(\cdot | \lambda, t, Q) \]
The Q + t mixture model

• Finite mixture models provide a natural way to model heterogeneous data.

\[w f(\cdot | \lambda, t, Q) + w f(\cdot | \lambda, t, Q) + \ldots + w f(\cdot | \lambda, t, Q) \]

for \(w + w + \ldots + w = 1 \)
The Q + t mixture model

- Finite mixture models provide a natural way to model heterogeneous data.

\[y_i \sim w f(\cdot | \lambda, t, Q) + w f(\cdot | \lambda, t, Q) + \ldots + w f(\cdot | \lambda, t, Q) \]

for \(w + w + \ldots + w = 1 \)

and ind. for \(i = 1, 2, \ldots, n \)
A branch-length mixture model

\[\gamma_i \sim w f(\cdot | \chi, t, Q) + w f(\cdot | \chi, t, Q) + \ldots + w f(\cdot | \chi, t, Q) \]

for \(w + w + \ldots + w = 1 \)

and ind. for \(i = 1, 2, \ldots, n \)
A branch-length mixture model

\[\gamma_i \sim w f(\cdot | \chi, t, Q) + w f(\cdot | \chi, t, Q) + \ldots + w f(\cdot | \chi, t, Q) \]

for \(w + w + \ldots + w = 1 \)
and ind. for \(i = 1, 2, \ldots, n \)
A branch-length mixture model

\[\gamma_i \sim w f(\cdot | \chi, t, Q) + w f(\cdot | \chi, t, Q) + \ldots + w f(\cdot | \chi, t, Q) \]

for \(w + w + \ldots + w = 1 \)

and ind. for \(i = 1, 2, \ldots, n \)
A branch-length mixture model

\[\gamma_i \sim \sum w f(\cdot | \chi, t, Q) \]

for \(w + w + \ldots + w = 1 \)

and ind. for \(i = 1, 2, \ldots, n \)
A branch-length mixture model

\[\gamma_i \sim w f(\cdot | \lambda, t, Q) + w f(\cdot | \lambda, t, Q) + \ldots + w f(\cdot | \lambda, t, Q) \]

for \(w + w + \ldots + w = 1 \)
and ind. for \(i = 1, 2, \ldots, n \)
The $Q + t$ mixture model

$$y_i \sim w f(\cdot | \chi, t, Q) + w f(\cdot | \chi, t, Q) + \ldots + w f(\cdot | \chi, t, Q)$$

for $w + w + \ldots + w = 1$

and ind. for $i = 1, 2, \ldots, n$
The $Q + t$ mixture model

• A label$_i$ identifies the specific process from which the i-th site is generated.
The Q + t mixture model

- A label$_i$ identifies the specific process from which the i-th site is generated.

$$p \left(\text{label}_i = \square \right) = \odot$$

independently for $i = 1, 2, ..., n$
The Q + t mixture model

- A label \(i \) identifies the specific process from which the \(i \)-th site is generated.

\[
p(\text{label}_i = \square) = \infty
\]

independently for \(i = 1, 2, \ldots, n \)
The $Q + t$ mixture model

• A label_i identifies the specific process from which the i-th site is generated.

\[p(\text{label}_i = \square) = \infty \]

independently for $i = 1, 2, \ldots, n$
The $Q + t$ mixture model

- A label_i identifies the specific process from which the i-th site is generated.

$$p \left(\text{label}_i = \square \right) = \varnothing \quad \text{for} \quad \square = \:\square_1, \:\square_2, \: \ldots, \:\square_n$$

independently for $i = 1, 2, \ldots, n$
The $Q + t$ mixture model

- Once the label for site i is known,

$$y_i \mid \square \sim f(\cdot \mid \chi, t, Q)$$

independently for $i = 1, 2, \ldots, n$
The $Q + t$ mixture model

- Once the label i for site i is known,

$$y_i | \mathbf{\cdot} \sim f(\cdot | \chi, t, Q)$$

independently for $i = 1, 2, \ldots, n$
The Q + t mixture model

- Once the label for site i is known,

\[y_i | \mathbf{\Theta} \sim f(\cdot | \lambda, t, Q) \]

independently for $i = 1, 2, \ldots, n$
The Q + t mixture model: an example

• Consider a DNA alignment:
The $Q + t$ mixture model: an example

- Consider a DNA alignment:

- Sites are modelled by:

$$
\gamma_i \sim w \ f(\cdot | \chi, t, Q) + w \ f(\cdot | \chi, t, Q)
$$

independently for $i = 1, 2, \ldots, n$
The $Q + t$ mixture model: an example

- Consider a DNA alignment:
The \(Q + t \) mixture model: an example

- Consider a DNA alignment:
The Q + t mixture model: an example

• Consider a DNA alignment:
The Q + t mixture model: an example

- Consider a DNA alignment:
The $Q + t$ mixture model: an example

- Consider a DNA alignment:
The Q + t mixture model: an example

- Consider a DNA alignment:
The Q + t mixture model: an example

- Consider a DNA alignment:
The $Q + t$ mixture model: an example

$$y_i \mid \square \sim f(\cdot \mid \chi, t, Q)$$

independently for $i = 1, 2, \ldots, m$
The $Q + t$ mixture model: an example

$y_i | \pi \sim f(\cdot | \lambda, t, Q)$

independently for $i = m+1, \ldots, n$
Analysis of B. burgdorferi: the ‘housekeeping genes’ alignment
Analysis of *B. burgdorferi*: the ‘housekeeping genes’ alignment
Analysis of *B. burgdorferi*: the ‘housekeeping genes’ alignment
Analysis of *B. burgdorferi*: the ‘housekeeping genes’ alignment
Analysis of B. burgdorferi: the ‘housekeeping genes’ alignment
Analysis of *B. burgdorferi*: the ‘housekeeping genes’ alignment
Analysis of *B. burgdorferi*: the ‘housekeeping genes’ alignment
Analysis of *B. burgdorferi*: the ‘housekeeping genes’ alignment

Site classification probabilities

Site number
Analysis of *B. burgdorferi*: the ‘housekeeping genes’ alignment

Posterior densities of stationary frequencies
Analysis of *B. burgdorferi*: the ‘housekeeping genes’ alignment

Posterior densities of substitution rates

- r_{AC}
- r_{AG}
- r_{AT}
- r_{CG}
- r_{CT}
- r_{GT}
Analysis of *B. burgdorferi*: the ‘housekeeping genes’ alignment

Posterior densities of branch lengths
Analysis of *B. burgdorferi*: the ‘housekeeping g. |ospC’ alignment
Analysis of *B. burgdorferi*: the ‘housekeeping g. | ospC’ alignment
Analysis of *B. burgdorferi*: the ‘housekeeping g. ospC’ alignment
Analysis of B. burgdorferi: the ‘housekeeping g. ospC’ alignment
Analysis of *B. burgdorferi*: the ‘housekeeping g. ospC’ alignment
Analysis of *B. burgdorferi*: the ‘housekeeping g.|ospC’ alignment

Site classification probabilities

Site number
Analysis of *B. burgdorferi*: the ‘housekeeping g. ospC’ alignment

Posterior densities of stationary frequencies

- π_A
- π_C
- π_G
- π_T
Analysis of B. burgdorferi: the ‘housekeeping g. | ospC’ alignment

Posterior densities of substitution rates
Analysis of *B. burgdorferi*: the ‘housekeeping g.|ospC’ alignment

Posterior densities of branch lengths

Histograms of Branch Lengths

- **Interior Branch Lengths**
 - The histogram shows the distribution of interior branch lengths. The mode is around 1.5, with a peak density of 3.

- **Terminal Branch Lengths**
 - The histogram illustrates the distribution of terminal branch lengths. The mode is slightly lower than the interior branch lengths, around 1.0, with a peak density of 2.
Conclusions

- A more realistic phylogenetic model that accommodates heterogeneity.
Conclusions

• A more realistic phylogenetic model that accommodates heterogeneity.

• The $Q+t$ mixture model automatically recovers the evolutionary identity of a site.
Conclusions

• A more realistic phylogenetic model that accommodates heterogeneity.

• The $Q+t$ mixture model automatically recovers the evolutionary identity of a site.

• It is a suitable indicator of evolutionary homogeneity or heterogeneity among large-scale concatenations of genes.
Conclusions

• It is relevant testing for homogeneity as a concatenation of genes will produce valid inferences only when there is evolutionary congruence.
Conclusions

• It is relevant testing for homogeneity as a concatenation of genes will produce valid inferences only when there is evolutionary congruence.

• *B. burgdorferi* data is just one application of many other possibilities.
Acknowledgements

- Merrilee Hurn, Mathematical Sciences
- Tony Robinson, Mathematical Sciences
- Gabi Margos, Biology and Biochemistry
- Klaus Kurtenbach, Biology and Biochemistry