Speeding Up Algorithms on Compressed Web Graphs

Chinmay Karande (Georgia Institute of Technology)
Kumar Chellapilla (Microsoft Live Labs)
Reid Andersen (Microsoft Live Labs)

WSDM 2009
Outline

1 Fast Algorithms for Compressed Graphs
 • Graph Compression
 • Adjacency Matrix Multiplication on Compressed Graphs
 • Adapting PageRank Markov Chain to Compressed Graphs
 • Other algorithms
 • Implementation Results
WWW Graph

- A gold-mine of important information.
- Webpages are nodes, hyperlinks are edges.
A gold-mine of important information.

Webpages are nodes, hyperlinks are edges.

HUGE dataset: \(~ 1\) Trillion pages
WWW Graph

- A gold-mine of important information.
- Webpages are nodes, hyperlinks are edges.
- **HUGE** dataset: \(\sim \) 1 Trillion pages
- Graph Algorithms:
 - Importance metrics: PageRank, HITS, SALSA...
 - Finding paths
 - Clustering
Structural Graph Compression

- Replace a dense subgraph by a sparse one, such that:
 - Maintain connectivity
 - Decompressible
 - Maintain ‘structure’
Clique-Star Compression
Clique-Star Compression: Terminology

Real Node

Real Node
Clique-Star Compression: Terminology

Real Node

Virtual Node

Real Node
Clique-Star Compression: Terminology

Virtual Node

Real Node

Virtual Edge
Clique-Star Compression

- Compression performed in **phases**: In each phase compress edge-disjoint cliques.
- In each phase, virtual edges may become longer by one.
- Diminishing returns on number of phases: ~ 6 to 8 phases yield 10 fold compression. [G. Buehrer, K. Chellapilla]
Problem Statement

Problem: Given G' compressed from G, how do we perform computations on G' so as to infer properties of G?

- How to determine metrics like:
 - PageRank
 - HITS
 - SALSA

of G without decompressing G'?
Example: PageRank

PageRank can be viewed as:
- Repeated multiplication by adjacency matrix (with adjustments)
 - We need a Black-Box procedure to multiply a vector by adjacency matrix of G given only G'.
Example: PageRank

PageRank can be viewed as:

- Repeated multiplication by adjacency matrix (with adjustments)
 - We need a Black-Box procedure to multiply a vector by adjacency matrix of G given only G'.
- Steady state of a Markov Chain
 - We need a Markov Chain on G' that ‘mimics’ the PageRank MC on G.
Outline

1. Fast Algorithms for Compressed Graphs
 - Graph Compression
 - Adjacency Matrix Multiplication on Compressed Graphs
 - Adapting PageRank Markov Chain to Compressed Graphs
 - Other algorithms
 - Implementation Results
Adjacency Matrix Multiplication: Nuts and Bolts

\[y = E^T \cdot x \quad x \in \mathbb{R}^n \]

\[y_v = x_{u_1} + x_{u_2} + x_{u_3} + x_{u_4} + x_{u_5} \]
Adjacency Matrix Multiplication on Compressed Graph

\[\mathbf{y} = \mathbf{E}^T \cdot \mathbf{x} \quad \mathbf{x} \in \mathbb{R}^n \]

\[\mathbf{y}_v = \mathbf{x}_{u_1} + \mathbf{x}_{u_2} + \mathbf{x}_{u_3} + \mathbf{x}_{u_4} + \mathbf{x}_{u_5} \]
Adjacency Matrix Multiplication on Compressed Graph

\[y = E^T \cdot x \quad x \in \mathbb{R}^n \]

\[y_v = x_{u_1} + x_{u_2} + y_w \]
Adjacency Matrix Multiplication on Compressed Graph: Dependencies

Consider a virtual edge $u \rightarrow w_1 \rightarrow \ldots \rightarrow w_k \rightarrow v$:

- y_v depends upon y_{w_k}
- y_{w_k} depends upon $y_{w_{k-1}} \ldots$
Subgraph induced by edges incident on virtual nodes is a forest. [G. Buehrer, K. Chellapilla]
⇒ There exists a way to resolve dependencies.
Acyclic Dependencies on Virtual Nodes

Subgraph induced by edges incident on virtual nodes is a forest. [G. Buehrer, K. Chellapilla]
⇒ There exists a way to resolve dependencies.

\[\textbf{while } y \text{ is undefined on some virtual nodes do} \]
 \[\text{Pick virtual node } w \text{ such that } y \text{ is defined on all virtual predecessors of } w. \]
 \[\text{Compute and define } y_w. \]
\[\textbf{end while} \]
Solution

Permute virtual nodes in the order of dependencies
Solution

Permute virtual nodes in the order of dependencies

- Practical Considerations
 - Sequential File Access
 - Synchronous algorithm
 - For SALSA: Inverted adjacency required for virtual nodes.
Solution

Permute virtual nodes in the order of dependencies

- Practical Considerations
 - Sequential File Access
 - Synchronous algorithm
 - For SALSA: Inverted adjacency required for virtual nodes.
 - **Speed-up almost matches the storage reduction ratio.**
Outline

1. Fast Algorithms for Compressed Graphs
 - Graph Compression
 - Adjacency Matrix Multiplication on Compressed Graphs
 - Adapting PageRank Markov Chain to Compressed Graphs
 - Other algorithms
 - Implementation Results
PageRank Scheme

PageRank is a Markov Chain:

- With probability α, perform a uniform ‘jump’.
- $Pr[u \rightarrow v] = (1 - \alpha)\frac{1}{|\delta_{out}(u)|}$
PageRank on Compressed Graph

\[Pr[X_t = u_i] = p_i \]

\[Pr[X_{t+1} = v_i | p_1, p_2, p_3] = \frac{1}{|\delta(u_1)|} + \frac{1}{|\delta(u_2)|} + \frac{1}{|\delta(u_3)|} \]
PageRank on Compressed Graph

\[Pr[X_t = u_i] = p_i \]

\[Pr[X_{t+1} = v_i | p_1, p_2, p_3] = \frac{1}{|\delta(u_1)|} + \frac{1}{|\delta(u_2)|} + \frac{1}{|\delta(u_3)|} \]

\[= \frac{1}{|\delta(w)|} \sum_i \frac{|\delta(w)|}{|\delta(u_i)|} \]
Defining the ‘reach’ of a node

\[\Delta(u) = \begin{cases}
1 & \text{If } u \text{ is real} \\
\sum_{uv \in E'} \Delta(v) & \text{If } u \text{ is virtual}
\end{cases} \]
Illustration of Δ function

\[\Delta(u) \; = \; 1 \]
\[\Delta(v) \; = \; 5 \]
\[\Delta(w) \; = \; 3 \]
Defining the true out-degree of a node

$$\Gamma(u) = \sum_{uv \in E'} \Delta(v)$$

If G' is compressed from G then:
- For real u, $\Gamma(u)$ is the out-degree of u in G.
- For virtual u, $\Gamma(u) = \Delta(u)$.

Illustration of Γ function

\[\Gamma(u) = 7 \]
\[\Gamma(v) = 5 \]
\[\Gamma(w) = 3 \]
With probability α, perform a uniform ‘jump’ but don’t jump to and from virtual nodes.
With probability α, perform a uniform ‘jump’ but don’t jump to and from virtual nodes.

$$Pr[u \rightarrow v] = \begin{cases}
(1 - \alpha) \frac{\Delta(v)}{\Gamma(u)} & \text{If } u \text{ is real} \\
\frac{\Delta(v)}{\Gamma(u)} & \text{If } u \text{ is virtual}
\end{cases}$$
Correctness theorem

Theorem

*If G' is compressed from G and p', p are respective PageRank vectors, then for every real node u, $p'(u) = \epsilon p(u)$.***
Proof.

Split the compression from G to G' in phases:

\[G = G_0 \succ G_1 \succ \ldots \succ G_k = G' \]

Let p_i be the steady state of (modified) PageRank on G_i.

Conclusion: For $u \in V(G_i)$, $p_i(u)$'s and $p_{i+1}(u)$'s satisfy the same equations \[p_{i+1}(u) = \epsilon_{i+1} p_i(u) \]

$\epsilon = \epsilon_1 \cdot \epsilon_2 \cdot \ldots \cdot \epsilon_k$
Proof

Proof.

- Split the compression from G to G' in phases:

$$G = G_0 \succ G_1 \succ \ldots \succ G_k = G'$$

Let p_i be the steady state of (modified) PageRank on G_i.

\[\epsilon = \epsilon_1 \cdot \epsilon_2 \cdot \ldots \cdot \epsilon_k \]
Proof

Split the compression from G to G' in phases:

$$G = G_0 \succ G_1 \succ ... \succ G_k = G'$$

Let p_i be the steady state of (modified) PageRank on G_i.

Conclusion: For $u \in V(G_i)$, $p_i(u)$'s and $p_{i+1}(u)$'s satisfy the same equations $\Rightarrow p_{i+1}(u) = \epsilon_{i+1}p_i(u)$
Proof

Proof.

Split the compression from G to G' in phases:

$$G = G_0 \succ G_1 \succ \ldots \succ G_k = G'$$

Let p_i be the steady state of (modified) PageRank on G_i.

Conclusion: For $u \in V(G_i)$, $p_i(u)$’s and $p_{i+1}(u)$’s satisfy the same equations $\Rightarrow p_{i+1}(u) = \epsilon_{i+1}p_i(u)$

$\epsilon = \epsilon_1 \cdot \epsilon_2 \cdot \ldots \cdot \epsilon_k$
Run (modified) PageRank on compressed graph, and normalize the values on real nodes to unit norm.
Precision Theorem

Theorem

\[\epsilon \geq 2^{-k} \]

where \(k \) is the length of the longest virtual edge.
Precision Theorem

\[\epsilon \geq 2^{-k} \]

where \(k \) is the length of the longest virtual edge.

Proof.

- Split the compression from \(G \) to \(G' \) in phases:
 \[G = G_0 \succ G_1 \succ \ldots \succ G_k = G' \]
 Let \(p_i \) be the steady state of (modified) PageRank on \(G_i \).

- To prove: \(\epsilon_i \geq 1/2 \).
Precision Theorem

\[\epsilon \geq 2^{-k} \]

where \(k \) is the length of the longest virtual edge.

Proof.

- Split the compression from \(G \) to \(G' \) in phases:
 \[
 G = G_0 \succ G_1 \succ \ldots \succ G_k = G'
 \]
 Let \(p_i \) be the steady state of (modified) PageRank on \(G_i \).
- To prove: \(\epsilon_i \geq 1/2 \).
- Follows from the fact that
 \[
 \sum_{u \in V(G_i)} p_i(u) + \sum_{u \in Q} p_i(u) = 1
 \]
Solution

Run (modified) PageRank on compressed graph, and normalize the values on real nodes to unit norm.

- Practical Considerations:
 - Modified only the weights - Can run any existing PageRank implementation almost unchanged.
 - Sequential File Access
 - Asynchronous: Distributed computing feasible.
 - Convergence may be slower due to longer path lengths.
Solution

Run (modified) PageRank on compressed graph, and normalize the values on real nodes to unit norm.

- Practical Considerations:
 - Modified only the weights - Can run any existing PageRank implementation almost unchanged.
 - Sequential File Access
 - Asynchronous: Distributed computing feasible.
 - Convergence may be slower due to longer path lengths.
 - Speed-up per iteration almost matches the storage reduction ratio!
Fast Algorithms for Compressed Graphs

- Graph Compression
- Adjacency Matrix Multiplication on Compressed Graphs
- Adapting PageRank Markov Chain to Compressed Graphs
- Other algorithms
- Implementation Results
Both the Synchronous and Asynchronous methods can be adapted for SALSA.

- In-link counterparts of Δ and Γ required.
Shortest Paths: BFS

- Simply define edge weights as:

\[w(u, v) = \begin{cases}
1 & \text{If } v \text{ is real} \\
0 & \text{If } v \text{ is virtual}
\end{cases} \]

- Use a Deque.
Outline

1. Fast Algorithms for Compressed Graphs
 - Graph Compression
 - Adjacency Matrix Multiplication on Compressed Graphs
 - Adapting PageRank Markov Chain to Compressed Graphs
 - Other algorithms
 - Implementation Results
Experiments: Proof of Concept

If β is the reduction ratio in the number of edges, we cannot hope for the programs to run β times faster.

$O(|V|)$ operations such as:

- Allocating variables
- Copying and zeroing values between iterations

bring down the speed-up to a small extent.
PageRank on eu-2005

- Uncompressed graph
 No. of nodes: 862,664
 No. of edges: 19,235,140

- Compressed graph has $\beta = 4.34$
 No. of nodes: 1,196,536
 No. of edges: 4,429,375

<table>
<thead>
<tr>
<th></th>
<th>Uncompressed</th>
<th>Synchronous</th>
<th>Asynchronous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time/iteration (sec)</td>
<td>5.37</td>
<td>1.58</td>
<td>1.50</td>
</tr>
<tr>
<td>No. of iterations</td>
<td>19</td>
<td>19</td>
<td>50</td>
</tr>
<tr>
<td>Speed-up</td>
<td>1</td>
<td>3.40</td>
<td>1.36</td>
</tr>
</tbody>
</table>
PageRank on uk-2005

- Uncompressed graph
 - No. of nodes: 39,459,925
 - No. of edges: 936,364,282

- Compressed graph has $\beta = 6.18$
 - No. of nodes: 47,482,140
 - No. of edges: 151,456,024

<table>
<thead>
<tr>
<th></th>
<th>Uncompressed</th>
<th>Synchronous</th>
<th>Asynchronous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time/iteration (sec)</td>
<td>264.40</td>
<td>59.52</td>
<td>59.15</td>
</tr>
<tr>
<td>No. of iterations</td>
<td>21</td>
<td>21</td>
<td>53</td>
</tr>
<tr>
<td>Speed-up</td>
<td>1</td>
<td>4.44</td>
<td>2.53</td>
</tr>
</tbody>
</table>
SALSA on eu-2005

- Uncompressed graph
 - No. of nodes: 862,664
 - No. of edges: 19,235,140

- Compressed graph has $\beta = 4.34$
 - No. of nodes: 1,196,536
 - No. of edges: 4,429,375

<table>
<thead>
<tr>
<th>Time/iteration (sec)</th>
<th>Uncompressed</th>
<th>Synchronous</th>
<th>Asynchronous</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of iterations</td>
<td>91</td>
<td>91</td>
<td>100</td>
</tr>
<tr>
<td>Speed-up</td>
<td>1</td>
<td>2.31</td>
<td>2.70</td>
</tr>
<tr>
<td>Storage Reduction</td>
<td>1</td>
<td>2.36</td>
<td>3.21</td>
</tr>
</tbody>
</table>
PageRank on uk-2005

- Uncompressed graph
 No. of nodes: 39,459,925
 No. of edges: 936,364,282

- Compressed graph has $\beta = 6.18$
 No. of nodes: 47,482,140
 No. of edges: 151,456,024

<table>
<thead>
<tr>
<th></th>
<th>Uncompressed</th>
<th>Synchronous</th>
<th>Asynchronous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time/iteration (sec)</td>
<td>276.09</td>
<td>72.93</td>
<td>88.69</td>
</tr>
<tr>
<td>No. of iterations</td>
<td>104</td>
<td>104</td>
<td>124</td>
</tr>
<tr>
<td>Speed-up</td>
<td>1</td>
<td>3.11</td>
<td>3.18</td>
</tr>
<tr>
<td>Storage Reduction</td>
<td>1</td>
<td>3.47</td>
<td>4.54</td>
</tr>
</tbody>
</table>
Thank you!