Laboratory Engagements: Risky Discourse and Research Decisions

Erik Fisher
efisher1@asu.edu
Arizona State University

Networks, Risk and Knowledge Sharing
University of Massachusetts Amherst
3 October 2008
Risky Discourse

• Discussions between scientists and “others”…
 – About broader dimensions of research (including risks)
 – That takes place in close proximity to the science and engineering in question (and thus can influence it)

• This can be risky
 – Social capital
 – Cultural taboos

• This can also be valuable
 – Responsibility of research
 – Productivity of research
Risky discourse is not a new idea

“Competent social scientists should work hand in hand with the natural scientists, so that problems may be solved as they arise, and so that many of them may not arise in the first instance”

John Steelman *Science and Public Policy* 1947
A “constitutional moment” in science governance

Risky discourse has been mandated in…

• United Kingdom to build “more reflective capacity into the practice of science” (Wilsdon 2005)

• Netherlands to “broaden the scope of strategic choices” (Rip 2005)

• Flanders, Belgium to “stimulate the reflexivity of scientists” (Goorden et al. 2008)

• United States to “make different research or application choices” (Guston & Sarewitz 2001)

(cf. Jasanoff forthcoming)
21st Century Nanotechnology R&D Act

• “Ensuring that ethical, legal, environmental, and other appropriate societal concerns…are considered during the development of nanotechnology” by

• “Insofar as possible, **integrating** research on societal, ethical, and environmental concerns with nanotechnology research and development”

• So that societal research “**influences the direction of ongoing** nanotechnology research and development”

(Fisher 2005, Fisher & Mahajan 2006)
Laboratory Engagement Studies

Case 1: ‘Dept. of Energy Laboratory’, Los Alamos National Laboratory

Case 2: Center for Single Molecule Biophysics, Arizona State University

Case 3: Thermal and Nanotechnology Laboratory, University of Colorado, Boulder
Case 1: EHS briefing discussion

Internal risks
Strophe: *We only talk about benefits, not risks of our research*
Antistrophe: *Don’t go over to the “dark side” of science*

External risks
Strophe: *I’m uncomfortable saying we just follow the usual practices*
Antistrophe: *No, the answer is we are holding to the most stringent possible standards*
Case 1 Findings

• Discussing negatives is perceived as risky:
 – Ideas from the “dark side” threaten optimism
 – Expressing concerns may trigger unproductive top-down decisions about research

• But also as valuable:
 – Committed to more briefings and discussions
 – Extended invitation to run a session at annual workshop
 • “How should we respond to these issues?”
 • List of recommendations
 • “Thank you for your leadership”
“Can public values affect the direction of laboratory research?”
Socio-Material Layers STEP 1

Please list key challenges and choices available to each of the groups and to the project as a whole.

Physics
Are we ready to "plug and play" the nano wire to carry the changes?
Any other changes for the wire?
Could we test it by itself in a mockup system?

Organic Chemistry
Are we ready to "plug and play" the chemical separation components?
Could we test the separation system separately?

Project as a Whole
We need to start building objects to discover the bugs and have time to correct them.

Biochemistry
Reliable DNA self assembly or silver nano spheres?
Consider cold storage as?
Electrochemical synthesis of AgA: R105L requires a...

Manual start building and testing components in a system separately.
Case 2 Findings

After initial skepticism...

- Graduate students report new perspectives on project and interdisciplinary research
- Faculty and graduate students request “more meetings like this”
- Faculty members have new “breakthrough” and “useful” research ideas
 - “That was actually useful”
 - Scheduled regular workshops
 - Co-authored article

Also: Discussing scientific responsibility stimulated research creativity
Case 3: Midstream Modulation

- Opportunity
 - Problem framing
- Considerations
 - Constraints and enablers
- Alternatives
 - Perceived available options
- Outcomes
 - Response to opportunity

“Embedded Humanist” in CU-Boulder College of Engineering

(Fisher 2007)

“Can decisions be otherwise?”
Render decisions more transparent
Absence of risky discourse

• Prior to the collaboration, no evidence of it in…
 – Research priority setting, proposal writing, experimental design and conduct, interpretation, paper writing, peer review, research program and PhD assessment, etc.

• During collaboration, some resistance to it
 – “it’s not our job”
 – “Others will decide”
 – “It will only make us safer”
Modulation of Research

• Opportunity
 – “Can we grow tubes in a fiber?”

• Considerations “Ferrocene is messy.”
 – “We didn’t know if it had any potential applications.”
 – “Why not try it and see.”
 – Fiber’s properties, prohibitive size, experimental procedure

• Alternatives
 – “I can only think of Ferrocene”
 – “Maybe ferrofluid” “then we wouldn’t need to use Ferrocene”

• Outcome
 – Ferrocene: “failed experiment”
 – Ferrofluid: “Now it’s actually turning out to be something”

(Fisher 2007)
Case 3 Findings

- Initial resistance turned to support (2 subjects)
- EHS-related research practice changes (1 subject)
 - Introduced alternative catalyst
 - Modified disposal method
 - Modified experimental setup
 - Formulated safety rules
- Measured increase in reflexive awareness (3 subjects)
 - Project “could have been a whole different thing”

Also, discussions salvaged a research project
The suitability of carbon nanotube growth on three dimensional surfaces and its application as infrared radiation absorbers for thermal detectors, and moldable thermal contact coatings is explored in this work. Carbon nanostructure growth is demonstrated on quartz using ferrofluid as the catalyst. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) are employed to study the internal structure of the carbon structures formed. By varying the catalyst deposition technique, nanotube growth with diameters in the range 30-70 nm and lengths up to several microns is achieved. Growth inside quartz tubes and fibers, as small as 50 µm is also demonstrated for hydrophobic transport of fluids.
Risky discourse, as employed in midstream modulation…

“…can produce research and development options not previously considered. This is of particular value if directors of public research are truly committed to generating beneficial sociotechnical innovation”

Joly & Rip Nature 2007
Risky Discourse

Does pose risks:
- Did (temporarily) dampen the outlook of scientists
- Could have (possibly) triggered unproductive policy decisions about research

But also offers value:
- Helped stimulate innovative ideas that promoted
 - Scientific productivity of research
 - Social responsibility of research

= A NET GAIN
for references please contact the author at efisher1@asu.edu

Material based on work supported by the National Science Foundation under Grant No. 0531194