Welcome to 3.091

Lecture 19

October 25, 2004
Taxonomy of Defects: Classify by Dimensionality

0-dimensional: point defects
1-dimensional: line defects
2-dimensional: interfacial defects
3-dimensional: bulk defects
Point Defects
- localized disruption in regularity of the lattice
- on and between lattice sites

1. Substitutional Impurity
- occupies normal lattice site
- dopant ☺, e.g., P in Si; B in C\(_{\text{(diamond)}}\)
- alloying element ☺, e.g., Mg in Al; or Ni in Au
- contaminant ☹, Li\(^+\) in NaCl

2. Interstitial Impurity
- occupies position between lattice sites
- alloying element ☺, e.g., C in Fe; or H in LaNi\(_5\)
- contaminant ☹, H in Fe
Self interstitial

Vacancy

Interstitial impurity atom

Substitutional impurity atom
Point Defects
- localized disruption in regularity of the lattice
- on and between lattice sites

1. Substitutional Impurity
- occupies normal lattice site
- dopant 😊, e.g., P in Si; B in C\(_{\text{diamond}}\)
- alloying element 😊, e.g., Mg in Al; or Ni in Au
- contaminant 😞, Li\(^+\) in NaCl

2. Interstitial Impurity
- occupies position between lattice sites
- alloying element 😊, e.g., C in Fe; or H in LaNi\(_5\)
- contaminant 😞, H in Fe
Point Defects
- localized disruption in regularity of the lattice
- on and between lattice sites

1. Substitutional Impurity
- occupies normal lattice site
- dopant 😊, e.g., P in Si; B in C\textsubscript{(diamond)}
- alloying element 😊, e.g., Mg in Al; or Ni in Au
- contaminant 😞, Li+ in NaCl

2. Interstitial Impurity
- occupies position between lattice sites
- alloying element 😊, e.g., C in Fe; or H in LaNi\textsubscript{5}
- contaminant 😞, H in Fe
3. Vacancy
- unoccupied lattice site
- formed at time of crystallization
- formed in service under extreme conditions
3. Vacancy
- unoccupied lattice site
- formed at time of crystallization
- formed in service under extreme conditions
Point Defects in Ionic Crystals
- special issues associated with the need to maintain global charge neutrality

1. Schottky Imperfection
- formation of equivalent (not necessarily equal) numbers of cationic and anionic vacancies

2. Frenkel Imperfection
- formation of an ion vacancy and an ion interstitial

3. F-Center
- formation of an ion vacancy and bound electron
Point Defects in Ionic Crystals
- special issues associated with the need to maintain global charge neutrality

1. Schottky Imperfection
- formation of equivalent (not necessarily equal) numbers of cationic and anionic vacancies

2. Frenkel Imperfection
- formation of an ion vacancy and an ion interstitial

3. F-Center
- formation of an ion vacancy and bound electron
Point Defects in Ionic Crystals
- special issues associated with the need to maintain global charge neutrality

1. Schottky Imperfection
- formation of equivalent (not necessarily equal) numbers of cationic and anionic vacancies

2. Frenkel Imperfection
- formation of an ion vacancy and an ion interstitial

3. F-Center
- formation of an ion vacancy and bound electron
<table>
<thead>
<tr>
<th>crystal structure</th>
<th>CN</th>
<th>close packed direction</th>
<th>highest density plane</th>
<th>close packed plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCC</td>
<td>12</td>
<td><011></td>
<td>{111}</td>
<td>yes</td>
</tr>
<tr>
<td>BCC</td>
<td>8</td>
<td><111></td>
<td>{011}</td>
<td>no</td>
</tr>
<tr>
<td>SC</td>
<td>6</td>
<td><001></td>
<td>{001}</td>
<td>no</td>
</tr>
<tr>
<td>HCP</td>
<td>12</td>
<td>basal</td>
<td></td>
<td>yes</td>
</tr>
</tbody>
</table>