Semantic Web. An introduction

TAO Workshop

Tomás Pariente Lobo

Paris, January 2009
Introduction to the Semantic Web

Semantic Web Services

Application of the Semantic Technologies
The Web presents its contents in multiple ways:

» Textual content in natural language (French, English, Spanish, Suomi…)
» Multimedia content (video, audio, graphs, …)

We **humans are able to process** all this stuff easily

» Making deductions based on incomplete information
» Linking concepts using free association

And we are used to make use of several senses, taking advantage of several types of interfaces with the Web
However, some of the tasks we perform on Internet are the result of combination of data coming from different Web resources:

- Hotels, car rental and flight info for planning personal or business trips
- Search on several virtual libraries

Besides, humans are able to combine all this information, even if they use different terminologies and languages.

Too much information on the Web
Too human-oriented
Difficult to organize and automate
However, machines are ignorant

» They do not know what to do with incomplete information

» They are not able to extract the meaning of many contents (e.g. a Visio diagram or a bande dessinée)

» There is software able to extract analogies between concepts automatically, but it was traditionally expensive (AI techniques)

» They have difficulties to combine information
 » Is it the same <foo:creador> to <other:autor> ?
 » XML is a step, but the differences on terminology still remain

A challenge for the Web
From a human-based Web, to delegate task to software agents
For that, the Web content has to be described in a way that the machines could understand
The current Web is based in **HTML**. HTML specifies how to render a Web page for human consumption, but **software agents** would need to “guess” the meaning.
While driving…
» …different vehicles…
» …share the same norms…
» …and everybody knows how to proceed

Using Semantics…
» …different agents…
» …use the same models (ontologies)…
» …and the systems knows how to proceed

You know this…

Logic, axioms, rules
"The Semantic Web is a vision: the idea of having data on the web defined and linked in a way that it can be used by machines not just for display purposes, but for automation, integration and reuse of data across various applications"

An infrastructure where machines can comprehend semantic data and extends the knowledge of humans

Meaningful information enables machines to “infer knowledge”

Tim Berners-Lee
Web inventor
Las Ketchup

Retail Price: $13.98
Our Price: $12.99
You Save: $0.99(7.1%)
Readers’ Advantage Price: $12.34 Join Now
In Stock: Ships within 2-3 days

<... xmlns:music_ontology="http://www.music.org/#" xmlns:ecommerce_ontology="http://www.ecom.com/#" ...>

<Artist>Las Ketchup</Artist>

Retail Price <Price>
<currency>$</currency>13.98 </Price>

Our Price <Price>
<currency>$</currency>12.99 </Price>
“The key notion of the semantic technology is to represent meanings and knowledge separated from the contents in a digital format that both humans and machines could access or interpret”

Mills Davis
Project 10X’s.
Author of the “Semantic Wave 2008 report”

Separating knowledge from information making it accessible for machine-processing
What do we need?
- Give meaning to the data being displayed
- Make it machine-understandable
- Tie up all meanings together
- Give the machine the tools and intelligence to “deduce” and correctly recognize what humans are using the web for

Building blocks
- Metadata
 - Resources are marked-up with descriptions of their comment.
- Ontologies
 - Shared and common understanding of a domain that can be communicated across people and applications

Semantic Web

The Semantic Web can be seen as an infrastructure based on metadata to reason over the Web
Is a horizontal technology that collaborates with many others
Billions of users and Web pages

Static

WWW
URI, HTML, HTTP

Syntactic

Serious Problems in information

» finding
» extracting
» representing
» interpreting
» and maintaining
Towards the Semantic Web

Static

Syntactic

WWW
URI, HTML, HTTP

Semantic

Syntactic Semantic Web

RDF, RDF(S), OWL

Machine-readable Web
The Semantic Web Stack is an illustration of the hierarchy of languages, where each layer exploits and uses capabilities of the layers below.

It shows how technologies that are standardized for Semantic Web are organized to make the Semantic Web possible. It also shows how Semantic Web is an extension (not replacement) of classical hypertext web.

The illustration was created by Tim Berners-Lee. The stack is still evolving as the layers are concertized.
Tom Gruber definition

“An ontology is a formal, explicit specification of a shared conceptualization”

- Machine-readable
- Consensual knowledge
- Abstract model and simplified view of some phenomenon in the world that we want to represent

"One Ring to rule them all, One Ring to find them, One Ring to bring them all and in the darkness bind them."

Inscription on the One Ring
• **Concepts**: Basic ideas that are being formalised

• **Relations**: Represents the interactions and links among concepts: subclass-of, part-of...

• **Functions**: Specific type of relation where an element is identified by using a function that considers several ontology elements: assign-date, apply-vat...

• **Instances**: Represent specific individuals of a given concept: “Antoine” is an individual of “Person”...

• **Axioms**: Logic theorems declared over relations that the elements of the ontology must comply with: “If A and B are of the class C, then A is not a subclass of B”, “For all A fulfilling condition C1, A is B”...
Ontology engineering methodology

Ontology Support Activities: Knowledge Acquisition (Elicitation); Documentation; Configuration Management; Evaluation (V&V); Assessment

1. Specification
2. Conceptualization
3. Formalization
4. Implementation
5. Localization
6. Aligning
7. Merging
8. Ontology Restructuring (Pruning, Extension, Specialization, Modularization)
9. Ontology Restructuring (Pruning, Extension, Specialization, Modularization)

Knowledge Resources

Non Ontological Resources
- Glossaries
- Dictionaries
- Lexicons
- Classification Schemas
- Taxonomies
- Thesauri

Ontological Resources
- O. Design Patterns
- O. Repositories and Registries

Ontological Resource Reengineering
- RDF(S)
- OWL
- Flogic

Ontological Resource Reuse
- O. Aligning
- O. Merging

Alignments
- RDF(S)
- OWL
- Flogic

NeOn project methodology
ADVANCE YOUR BUSINESS
But

» Manual engineering of ontologies is a very time consuming task!

» (Semi)automatic support needed to reduce the burden of engineering
 - ... e.g. with Ontology and Instance Learning.

» Why semi-automatic
 » A lot of tacit background knowledge, experiences, social conventions, etc, is involved in
 the modeling process.
 » Simplifies knowledge adquisition.
 » However, in order to obtain high quality results,
 a human has to be in the loop.
 » If this were not the case, the Semantic Web would be superfluous!

» TAO take:
 » Semi-automatic domain ontology creation from documentation and legacy content
Types of document annotation

- Marking up contained information
 - Portions of documents associated to objects in ontologies
 - Enable ontology-driven processing
- Adding free text annotation
- Adding knowledge to documents
 - Document enrichment: helping connecting the document to the rest of the knowledge

(Semi)automated annotation

- To help manual annotation or to replace human annotators
- Simplifies maintenance
- TAO take: Knowledge augmentation
Introduction to the Semantic Web

Semantic Web Services

Application of the Semantic Technologies
Bringing the computer back as a device for computation

<table>
<thead>
<tr>
<th>Static</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWW URI, HTML, HTTP</td>
<td>Web Services UDDI, WSDL, SOAP</td>
</tr>
</tbody>
</table>

Syntactic | Semantic
A web service is a piece of software that is made available on the Internet and utilizes a standardized XML messaging system.

In other words ~ A web service is a remote procedure call over the Internet using XML messages.

Loosely coupled, reusable components

Distributed

Add new level functionality on top of the current web
Web services - Framework

- Web service
 - Describes service
 - Communicate with XML messages
 - Service consumer
 - SOAP
- UDDI
 - Discover service
 - Points to service
 - Points to description
- WSDL
 - Describes service
Universal Description, Discovery, and Integration

- A project to speed interoperability and adoption for web services
 - Standards-based **specifications** for **service description and discovery**
 - Shared **operation** of a **business registry** on the web

UDDI Business Registry

- Partnership among industry and business leaders
Businesses populate the registry with descriptions of the services they support.

Software companies, standards bodies and programmers populate the registry with descriptions of different service specifications.

Marketplaces, search engines, and business apps query the registry to discover services at other companies.

UDDI Business Registry

- Business Registrations
- Services Type Registrations

UDDI assigns a universally unique identifier (UUID) to each registry record.

Businesses use this data to facilitate easier integration with each other over the web.
Web services - WSDL

```xml
<?xml version="1.0" encoding="UTF-8"?>
<definitions>
  <types>
    <!-- define the types here using XML Schema -->
  </types>
  <message>
    <!-- XML messages the web service uses are defined here -->
  </message>
  <portType>
    <!-- define the input and output parameters here -->
  </portType>
  <binding>
    <!-- define the network protocol here -->
  </binding>
  <service>
    <!-- location of the service -->
  </service>
</definitions>
```

- **Types** contains data type definitions.
- **Messages** consist of one or more parts.
- A **portType** describes an abstract set of operations.
- A **binding** describes a concrete set of formats and protocols for the foo portTypes.
- A **port** describes an implementation of the foobar binding.

Types contains data type definitions
Messages consist of one or more parts
A portType describes an abstract set of operations
A binding describes a concrete set of formats and protocols for the foo portTypes
A port describes an implementation of the foobar binding
Problems

- Descriptions are syntactic

- All tasks associated with web services application development have to be carried out by humans
 - Discovery, composition and invocation

- Poor UDDI adoption

- Problems of scalability
Towards Semantic Web Services

Bringing the computer back as a device for computation

Dynamic

Web Services
UDDI, WSDL, SOAP

WWW
URI, HTML, HTTP

Static

Bringing the web to its full potential

Semantic

Web Services
WSMO, SAWSDL...

Semantic Web
RDF, RDF(S), OWL

Syntactic

Semantic

Towards Semantic Web Services
Semantic Web services

- **Semantic web technology**
 - Machine readable data
 - Ontological basis

Applied to

- **Web Services technology**
 - To be able to describe service properties
 - and later search for services according to their properties
 - giving the possibility of create clever service compositions
 - and execution of new composed services

- This search and composition needs to be done in a machine processable and interoperable manner

- This in turn is possible only by describing the semantics of Web services through ontology languages
“Self-contained, self-describing, semantically marked-up software resources that can be published, discovered, composed and executed across the Web in a task driven semi-automatic way”

Objectives that a client wants to achieve by using Web Services

- Capability (functional)
- Interfaces (usage)

Provide the formally specified terminology of the information used by all other components

Connector between components with mediation facilities for handling heterogeneities

Semantic Web Services - WSMO
I would like to buy a flight ticket and make a hotel reservation

Goal

Here is your reservation: Flight and hotel

Flight ontology

Import ontologies

Purchase ontology

Import ontologies

Semantic Web Services example

WG Mediator

Web service 1

Web service 2

Web service 3

Web service 4

Web service 5

O1

O2

O3

I1

I2

WS2

O1

O2

O3
Semantic Web: A bigger example

REAL WORLD

Users

Businesses

Inelligent Agents

Knowledge representation

The Semantic Web

Web Services

Web Services

Web Services

Business applications

Documents

Emails

Static Websites

Online Database (Schema unknown)

Ontology

Dynamic Websites

Password protected Websites

Web Services
» Introduction to the Semantic Web
» Semantic Web Services
» Application of the Semantic Technologies
» Semantic interoperability: understanding
» Transforming information into knowledge: learning
» Content annotation and extraction: discovery
» Semantic search and navigation: seeing beyond
» Semantic desktop: knowing what I have
» Content, service, and application composition: automating complexity from simple things
» Systems that know: adding intelligence

» Integrated and interoperable architectures, collaboration, ontology engineering, information sharing, assessment systems (semantic analysis), information and knowledge management (semantic wiki), content publication and retrieval

Fuente: Mills Davis
(11th Annual Lockheed Martin Information Technology Trends Conference 2006)
The Semantic Web has indeed a strong foundation in research results. But remember:
1. the Web was born at CERN…
2. …was first picked up by high energy physicists…
3. …then by academia at large…
4. …then by small businesses and start-ups…
5. “big business” came only later!
6. network effect kicked in early…
Semantic Web is now at #4, and moving to #5!
Technology Adoption Life-cycle

Early Markets
- Visionaries: Get ahead!
- Techies: Try it!

Mainstream Markets
- Pragmatists: Stick with the herd!
- Conservatives: Hold on!

Late Market
- Skeptics: No way!

Innovators 2 1/2%
Early Adopters 13 1/2%
Early Majority 34%
Late Majority 34%
Laggards 16%

SW is around here.
CEO guide for SW: the “DO-s” and “DON’t-s”

» **DO-s**
 » **Start small**: Test the Semantic Web waters with a pilot project [...] before investing large sums of time and money.
 » **Check credentials**: A lot of systems integrators don’t really have the skills to deal with Semantic Web technologies. Get someone who’s savvy in semantics.
 » **Expect training challenges**: It often takes people a while to understand the technology. [...]
 » **Find an ally**: It can be hard to articulate the potential benefits, so find someone with a problem that can be solved with the Semantic Web and make that person a partner.

» **DON’T-s**
 » **Go it alone**: The Semantic Web is complex, and it’s best to get help. [...]
 » **Forget privacy**: Just because you can gather and correlate data about employees doesn’t mean you should. Set usage guidelines to safeguard employee privacy.
 » **Expect perfection**: While these technologies will help you find and correlate information more quickly, they’re far from perfect. Nothing can help if data are unreliable in the first place.
 » **Be impatient**: One early adopter at NASA says that the potential benefits can justify the investments in time, money, and resources, but there must be a multi-year commitment to have any hope of success.

Source: BusinessWeek Online, April 2007
Semantic Web technologies **integrate data, content, applications, and processes via a shared ontology** of concepts, properties, constraints, logic and rules.

Semantic Web technologies are “**meaning-centered**”. The building blocks for semantics are data, **metadata**, context, and **ontologies**.

By using ontologies, Semantic Web technologies **support data integration, enterprise interoperability, and the discovery and composition of Web Services**.

Based on W3C standards, semantic web technologies are used to **create, discover, represent, organize, process, manage, reason with, present, share, and utilize meanings to achieve enhanced integration, interoperability, intelligent content management and knowledge** enabled business capabilities.

SEMANTICS ARE HERE TO STAY
THANKS FOR YOUR ATTENTION

A new form of Web content that is meaningful to computers will unleash a revolution of new abilities

by
TIM BERNERS-LEE,
JAMES HENDLER and
ORA LASSILA

Tomás Pariente Lobo – tomas.parientelobo@atosresearch.eu