Causal Structure Search:
Philosophical Foundations and Problems

Richard Scheines & Peter Spirtes
Carnegie Mellon University
Outline

1. Causal Learning (vs. Predictive Learning)
2. Recent Successes
4. Problems with the Standard Set-up
Causal Discovery - Goals

1) Policy, Law, and Science: How can we use data to answer
 a) *subjunctive* questions (effects of future policy interventions), or
 b) *counterfactual* questions (what would have happened had things been done differently (law)?
 c) *scientific* questions (what mechanisms run the world)

2) Rumsfeld Problem: Do we know what we don’t know: Can we tell when there is or is not enough information in the data to answer causal questions?
Causal Learning is Harder than Prediction

Data(X,Y)

Prediction

Statistical Machine Learning

Causal Structure Learning Algorithm

Causal Structure(s) (Graph)

$P(Y,X)$

$P(Y|X)$

$P(Y|X_{set})$
Causal Learning is Limited, but Rumsfeld

Population \((X, Y)\)

\(P(X, Y), \text{Causal Graph}(X, Y)\)

Data\((X, Y)\)

Background Knowledge

Causal Structure Learning Algorithm

Equivalence Class of Causal Structures

\(P(Y \mid X_{\text{set}})\)

Population \((X_1, X_2, X_3)\)

\(X_1 \rightarrow X_2 \rightarrow X_3\)

\(P(X_1, X_2, X_3): X_1 \perp\!
\perp X_3 \mid X_2\)

Data\((X_1, X_2, X_3)\)

BK: \(X_2\) prior to \(X_3\)

No confounders

Causal Structure Learning Algorithm

Equivalence Class

\(X_1 \rightarrow X_2 \rightarrow X_3\)

No

\(P(X_1 \mid X_{2\text{set}})\)

Yes

\(P(X_3 \mid X_{2\text{set}})\)
Recent Successes

(Partial List!)

• Do-Calculus
• Identification
• Bounding
• Bayesian Search
• Time-varying confounders and conditionally randomized treatment
 (Jamie Robins)
• Dynamic Bayes Nets
• Equivalence Classes
 (patterns, PAGs, Factor Analytic Measurement Models)
Recent Successes
(Partial List!)

• Pointwise Consistent Discovery Algorithms
 (patterns, PAGs, MMs, SEM with pure MM, Linear-Cyclic Models)

• Discovery in Time Series
 (Granger & Swanson, Hoover, Bessler, Moneta)

• Linear, non-Gaussian models (Shimizu, Hoyer, Hyvarinen)

• Active Search
 (Cooper, Eberhardt, Tong, Kohler, Murphy, He & Gong)

• Overlapping Sets of Variables (Tillman & Danks)

• Applications (Ed. Research, Biology, Economics, Sociology, etc.)

• Causality Challenge!!
Philosophical Foundations of Causal Structure Learning

\[V = \{M, L\} \quad M \text{ measured, } L = \text{ unobserved (latent)} \]

Causal structure over \(V \) \(\Rightarrow \) Constraints in \(P(V) \)

- **Assumption 1**: Weak Causal Markov Assumption
 \[V_1, V_2 \text{ causally disconnected} \Rightarrow V_1 \perp \!\!\!\!\!\!\perp V_2 \]

- **Assumption 2a**: Causal Markov Axiom

- **Assumption 2b**: Determinism, e.g., Structural Equations
 For each \(V_i \in V, V_i := f(\text{parents}(V_i)) \)
Causal structure over $V \Rightarrow$ Constraints in $P(V)$

Causal Markov Axiom:

If G is a causal graph, and P a probability distribution over the variables in G, then in P: every variable V is independent of its non-effects, conditional on its immediate causes.
Faithfulness

Constraints on a probability distribution P generated by a causal structure G hold for all parameterizations of G.

\[\text{Revenues} = a \text{Rate} + c \text{Economy} + \varepsilon_{\text{Rev.}} \]
\[\text{Economy} = b \text{Rate} + \varepsilon_{\text{Econ.}} \]

Faithfulness: $a \neq -bc$
Modularity of Intervention/Manipulation

Structural Equations:
- Education = ε_{ed}
- Longevity = $f_1 \text{(Education)} + \varepsilon_{Longevity}$
- Income = $f_2 \text{(Education)} + \varepsilon_{income}$

Manipulated Structural Equations:
- Education = ε_{ed}
- Longevity = $f_1 \text{(Education)} + \varepsilon_{Longevity}$
- Income = $f_3 \text{(M1)}$
Structural Equations:
Education = \varepsilon_{ed}
Longevity = f_1 (Education) + \varepsilon_{Longevity}
Income = f_2 (Education) + \varepsilon_{Income}

Manipulated Structural Equations:
Education = \varepsilon_{ed}
Longevity = f_1 (Education) + \varepsilon_{Longevity}
Income = f_3 (M2,Education) + \varepsilon_{Income}
The Standard Set-up

- Measured Vars M given
- $V = \{M, L\}$ satisfy Markov, Faithfulness, Modularity
- Tasks:
 - Discover structure (e.g., causal relations) among M
 - Estimate causal parameters
 - Less often:
 - Discover existence of L
 - Discover and estimate causal relations among L
Problems with the Standard Set-up

• Faithfulness in Redundant or Thermostatic Mechanisms

• Measurement
 • Classical Measurement Error
 • Coarsening
 • Aggregation

• Ambiguous Manipulations

• Modularity in Constraint Based, Reversible Systems

• Variable Construction / Decision Theory
Faithfulness

• Redundant Mechanisms

Gene A + Protein
 - Gene B +

Gene A _||_ Protein

• Thermostatic Equilibrium

Air Temp Target - Core
 + Sweat/Heatup

Core Temp

Air Temp _||_ Core Temp
Classical Measurement Error

\[Z' = Z + \epsilon \]

Measurement Error: \[Z' = Z + \epsilon \]

\[X \perp\perp Y \mid Z \]

\[X \perp\perp Y \mid Z' \] unless \(\text{Var}(\epsilon') = 0 \)
Coarsening

$Smoking_{coarse}$

- Ever smoked before age 50 [y,n]

$Smoking_{precise}$

- Exact amount smoked before age 50

$Tar_stains_precise$

- Exact amount of tar-stains on fingers at age 50

$Lung_Cancer$

- By age 60

$Lung_Cancer \parallel Tar_stains_precise \parallel Smoking_precise$

$Lung_Cancer \parallel Tar_stains_precise \parallel Smoking_coarse$
TV → Obesity

Goals:
- Estimate the influence of TV on BMI
- Tease apart the mechanisms (diet, exercise)
Measures of Exercise, Diet

Exercise_M: L ← Calories expended in exercise in bottom two tertiles
Exercise_M: H ← Calories expended in exercise in top tertile

Diet_M: L ← Calories consumed in bottom two tertiles
Diet_M: H ← Calories consumed in top tertile
Measures of Exercise, Diet

Findings:
• TV and Obesity NOT screened off by Exercise_M & Diet_M
• Bias in mechanism estimation unknown
Microarrays: measured gene expressions are *sумs* of gene expression across all cells in tissue sample

\[\forall \text{ Cells: } X \perp \perp Y \mid Z \]

\[\Sigma_n X \perp \perp \Sigma_n Y \mid \Sigma_n Z \]

unless \(P(X,Y,Z) \) is special, e.g., Gaussian
Causal Discovery in fMRI

∀i,j : Xi _||_ Yj | {Z}

fMRI measures aggregate activity in a voxel

Variables aggregate activity over voxels

Σ X _||_ Σ Y | Σ Z
1960s: In RCTs, drugs that reduce TC (total cholesterol), reduce the risk of DH (Heart Disease).

- $P(DH \mid TC_{set})$ identifiable.

- $TC \equiv_{def} f(LDL, HDL)$, high-density & low-density cholesterol
Ambiguous Manipulations

- $HDL=L, \ LDL=L \implies TC=L$
- $HDL=L, \ LDL=H \implies TC=M$
- $HDL=H, \ LDL=L$
- $HDL=H, \ LDL=H \implies TC=H$

- Arrows in boldface are definitional links
Suppose HDL, LDL unobserved

* TC cannot be manipulated independently of both HDL and LDL

* “Set TC to M” is ambiguous over:
 - HDL = H and LDL = L
 - HDL = L and HDL = H
Suppose $HDL = H$ and $LDL = L$ prevents H, and $HDL = L$ and $HDL = H$ promotes H?

What is $P(DH \mid TC_{set} = M)$?

Can ambiguity be detected?

- Need additional assumptions? Yes, e.g., variability
- From observational data? Sometimes
- Will positive causal hypotheses be inferred involving variables whose effect is ambiguous? Probably not
Reversible/Constraint Systems

- $PV = nRT$
- Constraint persists, even with surgical interventions
- “joint” part of $P(V,T,P)$ remains unaltered by any intervention.
- Is there a causal graph and parameterization thereof such that the constraint holds for any permissable set of surgically altered equations?
- Can such systems be learned without intervention?
Variable construction can be framed as a search problem, thus a decision problem

Decision problem for prediction ? decision problem for causal learning
Variable Construction for Causal Learning

Raw Data
- Voxels in fMRI

Features/Variables
- Activity in a Brain Region
Variable Construction for Causal Learning

- Adjust for interunit – anatomical matching
- Correct for time lag of hemodynamic response & scan time
- Identify voxels with statistically improbable signals
- Cluster, usually by eyeball
- Variables constructed =
 - mean of signal intensity in cluster
 - one of the first 4 principal components
 - average intensity of top X% variance voxels
 - maximum variance voxel
 - non-contiguous regions
 - possibly overlapping

Raw Data
- Voxels in fMRI

Features/Variables
- Activity in a Brain Region
Decision Theory for Causal Learning

• Positive utility on increasing an output from baseline (e.g., learning in online course, brain activity in region associated with emotional intelligence among autistic children)

• Intervention on 1 variable, leave cost aside.

• Raw data \rightarrow constructed variables \rightarrow causal search algorithm

• Compute expected utility of intervention

• Uncertainty over:
 • causal structure
 • parameters in a given causal structure
Model Uncertainty for 1 set of constructed variables

\[
EU(\text{do}(X)) = EU(\text{do}(X) \text{ in } EC1) \cdot P(EC1) + EU(\text{do}(X) \text{ in } EC2) \cdot P(EC2)
\]

\[
EU(\text{do}(X) \text{ in } EC1) = EU(\text{do}(X) \text{ in } \text{DAG}_i \text{ in EC1}) \cdot P(\text{DAG}_i \text{ in EC1}) + ...
\]

\[
EU(\text{do}(X) \text{ in } \text{DAG}_i \text{ in EC1}) = \int \text{EU}(\text{do}(X) \text{ in } \text{DAG}_i, \alpha = x) \, dx
\]
Model Uncertainty for *many sets* of constructed variables

- EU(do(X)) vs. EU(do(X')) vs. EU(do(X''))
- Meaningful prior over models in output for each VC regime?
Thanks