high-performance Python package for predictive modeling

Davide Albanese, Stefano Merler, Giuseppe Jurman, Roberto Visintainer, Cesare Furlanello
FBK – MPBA Research Unit, Trento, Italy

NIPS Workshop on Machine Learning Open Source Software
12th December 2008
Main Issues
(in developing a Open Source ML library)

Modularity: setting up a correct methodological workflow requires fulfilling a complex pipeline of basic tasks

Maintenance: rapid prototyping of new algorithms allows keeping the library updated to state-of-the-art

Reproducibility: the experiments should be repeatable, so every single step should be exactly replicable

Usability: researchers should be able to build their own methodological pipeline

Efficiency: computing time and memory usage are relevant in most of ML tasks
Our Answer

Dynamic object-oriented programming language
- very clear, readable syntax
- portable
- stable and mature

Python module
- provides fast N-dimensional array manipulation
- basic linear algebra functions
- tools for integrating C/C++ code

Well established and popular programming language
- efficiency
- code portability
- code reusing
mlpy v1.2.7 - Overview

Computationally efficient with low memory use
- internal ANSI C99 functions
- intensive use of the NumPy module

Multiplatform
- Unix and GNU/Linux
- MS Windows
- Mac OS X

Compact
- Source Code size: 464 KB
- ~3000 lines of ANSI C99 code
- ~2000 lines of Python code

Requirements
- libc
- Python >= 2.4
- NumPy >= 1.0.3
mlpy v1.2.7 - Structure

Provides high level procedures that support the design of rich *Data Analysis Protocols (DAPs)* for **predictive classification** and **feature selection**

Elective application field: **bioinformatics** on **high-throughput data**
Classification

Implemented Algorithms

• **Support Vector Machines** [Vapnik, 95]
 – Sequential Minimal Optimization (SMO) algorithm
 – Implemented in C
 – Four Kernels: Linear, Gaussian, Polynomial, Terminated Ramps [Merler and Jurman, 06]

• **Nearest Neighbors** [Cover and Hart, 67]
 – Implemented in C

• **Discriminant Analysis**
 – Fisher (KFDA) [Mika et al., 01]
 – Penalized (PDA) [Ghosh, 03]
 – Spectral Regression (SRDA) [Cai et al., 08]
 – Diagonal Linear (DLDA – mlpy v1.2.8) [Pique-Regi, 06]

• **classifier(params)** for classifier initialization.

• **.compute(x, y)**
 the method for the training phase computing the model. x stores the data (samples x features) and y collects the corresponding labels.

• **.predict(p)**
 the method for the testing phase predicting the model on a test-set. Test points are stored in p.

• **.realpred**
 whenever possible it stores the real valued prediction.

• **.classifier__param**
 internal classifier parameters are accessible.
Feature Weighting

Implemented Algorithms

• directly within SVM classifiers:
 – for all implemented kernels

• directly with DA:
 – Fisher (KFDA) – Cristianini method [Cristianini and Shawe-Taylor, 06]
 – Spectral Regression (SRDA)
 – Penalized (PDA)
 – Diagonal Linear (DLDA – mlpy v1.2.8)

• Iterative RELIEF (I-RELIEF) [Sun, 07]

• Discrete Wavelet Transform (DWT) [Subramani et al., 06]
Feature Ranking

Implemented Algorithms

• Recursive Feature Elimination [Guyon et al., 02]
 – (Standard) RFE
 – Entropy-based RFE [Furlanello et al., 03]
 – Bisection RFE
 – Square-Root RFE

• Recursive/Sequential Forward Selection (R/S FS) [Louw and Steel, 06]

• One-step ranking

• `ranking(method, params)` for feature ranking initialization.

• `compute(x, y, w)` the method computing the feature ranking. \(w \) is the feature weighting method. It returns the list of the ranked features.
The ordered lists from the feature ranking experiments can be analyzed by:

- **canberra**\(\left(lists, k \right) \):
 - Canberra indicator on top-k positions [Jurman et al., 08]

- **canberraQ**\(\left(lists \right) \) (mlpy v1.2.8):
 - Canberra indicator on lists of different length

- **borda**\(\left(lists, k \right) \)
 - Extraction indicator
 - Mean position indicator
 - Optimal list on top-k sublists

JC de Borda, 1781
Metric functions

A set of different measure are available for the classifier performance assessment:

- **Error**
 - $\text{err} = (fp + fn) / ts$
 - $\text{errp} = fp / ap$
 - $\text{errn} = fn / an$

- **Accuracy**
 - $\text{acc} = (tp + tn) / ts$

- **Sensitivity and Specificity**
 - $\text{sens} = tp / ap$
 - $\text{spec} = tn / an$

- **Matthews Correlation Coefficient (MCC)**
 - $\text{MCC} = \frac{(tp \cdot tn) - (fp \cdot fn)}{\sqrt{(tp + fn)(tp + fp)(tn + fn)(tn + fp)}}$

- **Area Under the ROC Curve (AUC)**

Variability assessed by Bootstrap Confidence Intervals
Resampling Methods

A few sampling procedures available with focus on replicability:

- Textbook (k-fold) cross validation
- Monte-Carlo cross validation
- Leave-one-out cross validation
- User-defined train/test

Method\((\text{params}) \) returns a list of tuples which contain the sample indexes for each replicate. For example:

\[
\text{training} \quad \text{test} \\
[((2, 4, 5, 6), [0, 1, 3]),
((0, 1, 5, 6), [2, 3, 4]),
((0, 1, 2, 3), [4, 5, 6]),
((1, 2, 3, 4), [0, 5, 6]),
((0, 2, 4, 6), [1, 3, 5]),
((0, 1, 2, 5), [3, 4, 6])
\]

StratMethod\((\text{params}) \) the Strat prefix indicates that stratification over labels is available
Landscaping and Parameters Tuning Tools

The package includes executable scripts to be used off-the-shelf for landscaping and parameter tuning tasks. These scripts implement a basic DAP.

- **svm-landscape** (regularizer)
- **srda-landscape** (alpha parameter)
- **fda-landscape** (regularizer)
- **pda-landscape** (regressions steps)
- **nn-landscape**
- **irelief-sigma** (sigma parameter)

User can choose the resampling method, range and number of steps. Error, MCC and Canberra Distance are retrieved for each step.
Notes

- mlpy is used by FBK-MPBA Research Unit for the MAQC-II project led by US FDA
- Runs on HPC facilities, Linux cluster at FBK and European Grid for E-sciencE (EGEE)
- mlpy is now used on datasets of 10^5 samples and tested for up to 10^6 features:
 - Copy Number Variation (CNVs)
 - Single Nucleotide Polymorphism (SNP)
 - Gene Expression (Microarray)
 - Proteomic (Mass Spectra)
- Partially supported by AIRC-IFOM
- Licensed under the GNU General Public License (GPL) version 3
- Homepage: https://mlpy.fbk.eu