The prediction error in functional linear regression

Christophe Crambes, Alois Kneip and Pascal Sarda

Université Paul Sabatier, Universität Bonn,
and Université Toulouse-le-Mirail

December 5, 2008
Introduction

In a number of important applications the outcome of a response variable \(Y \) depends on the variation of an explanatory variable \(X \) over time (age, etc.).

- Outcome \(Y \) of a chemical reaction depending on the varying temperatures \(X(t) \) in a reactor over some time interval \(I \).

- End price of an EBAY online auction (duration 7 days) in dependence of the price changes \(X(t) \) in the first 5 days of the auction.

- Maximum of ozone measured during a day in dependence of Curves representing repeated measurements of concentration in ozone measured the previous day.

Linear regression model based on \(p \) repeated measures of an explanatory variable (often \(p \gg n \)):

\[
Y_{ij} = \beta_0 + \sum_{j=1}^{p} \beta_j X_i(t_j) + \epsilon_i, \quad i = 1, \ldots, n, \ j = 1, \ldots, p
\]
Functional Regression:

- Scalar response variable Y_i, $i = 1, \ldots, n$
- The variation of Y_i is modelled in dependence of a functional explanatory variable X_i; X_i is a square integrable function defined on a compact interval I of \mathbb{R}.
- X_1, \ldots, X_n is a sequence of identically distributed random functions with the same distribution as a generic X. X it is a second order variable, $\mathbb{E}(\int_I X^2(t)dt) < +\infty$.

Functional linear regression model:

$$Y_i = \beta_0 + \int_I \beta(t)X_i(t)dt + \epsilon_i, \quad i = 1, \ldots, n,$$

- ϵ_i - i.i.d. centered random errors, $\mathbb{E}(\epsilon_i) = 0$, $\mathbb{E}(\epsilon_i^2) = \sigma^2_\epsilon$, and ϵ_i is independent of X_i.
- β is a square integrable functional parameter defined on I that must be estimated from the pairs (X_i, Y_i), $i = 1, \ldots, n$.
Sparseness and functional regression

“Sparseness literature”: High dimensional regression problem

\(p \) explanatory variables (usually not functional); \(p \) large compared to \(n \)

\[
Y_i = \sum_{j=1}^{p} \beta_j X_{ij} + \epsilon_i, \quad i = 1, \ldots, n
\]

Structural hypotheses:

- **Sparseness**: There is only a small number \(q \ll p \) of coefficients \(\beta_j \) which are nonzero.

- **Sufficiently weak correlations between explanatory variables.**

 Candes and Tao (2007): ”every set of columns with cardinality less than \(q \) approximately behaves like an orthonormal system”

Methods: LASSO, Dantzig selector

Some literature: For example Meinshausen and Bühlmann (2006), Candes and Tao (2007), Bickel, Ritov and Tsybakov (2007)
The setup of functional regression:
Discrete approximation (p large); Equidistant design

\[t_j - t_{j-1} = \frac{b-a}{n}, \ I = [a, b] \]

\[Y_i = \sum_{j=1}^{p} \beta_j X_i(t_j) + \epsilon_i = \frac{1}{p} \sum_{j=1}^{p} \beta(t_j) X_{ij} \]

Structural setup:

- **No Sparseness of coefficients**: \(\beta_j \equiv \frac{\beta(t_j)}{p} \); \(\beta(t_j) \) discretized values of a *continuous* slope function \(\beta(t) \); in general, all coefficients \(\beta_j \) of “comparable” order of magnitude

- **Very strong correlations between \(X_i(t_j) \) and \(X_i(t_k) \), \(j \neq k \)**: \(X_1, X_2, \ldots \) i.i.d. sample of continuous random functions, equidistant design \(I = [a, b] \), \(t_j = a + (j-1)\frac{b-a}{p} \)

\[\Rightarrow \text{for any fixed } j, \ m \in \mathbb{N} \]

\[\text{corr}(X_i(t_j), X_i(t_{j+m})) \rightarrow 1 \quad \text{as } p \rightarrow \infty \]
But: Dimension reduction by (functional) principal components

Discretized case: Let $X_i = (X_i(t_1), \ldots, X_i(t_p))^T$. Assume that variables are centered and possess zero mean.

\[\text{Covariance matrix } \Sigma = E(X_iX_i^T) \]

Let $l_1 > l_2 > \ldots$ and ζ_1, ζ_2 denote eigenvalues and a corresponding system of orthonormal eigenvectors (principal components) of Σ.

Continuous case: Covariance operator Γ defined by

\[\Gamma(\beta) := E \left(\int \beta(t)(X(t) - E(X)(t))dt \right) \]

Let $\lambda_1 > \lambda_2 > \ldots$ and $\gamma_1, \gamma_2, \ldots$ denote eigenvalues and a corresponding orthonormal system of eigenfunctions of Γ; necessarily $\sum_{r=1}^{\infty} \lambda_r < \infty$

Equidistant design, X smooth: For fixed $r \in \mathbb{N}$

\[\frac{l_r}{p} \rightarrow \lambda_r, \quad \frac{1}{p} \sum_{j} (\sqrt{p} \zeta_{rj} - \gamma_r(t_j))^2 \rightarrow 0 \]
Remark: Equidistant design, X smooth: As $n,p \to \infty$

$$\frac{\hat{l}_r}{p} \to_p \lambda_r, \quad \frac{1}{p} \sum_j (\sqrt{p} \hat{\zeta}_{rj} - \gamma_r(t_j))^2 \to_p 0,$$

where $\hat{l}_1 > \hat{l}_2 > \ldots$ and $\hat{\zeta}_1, \hat{\zeta}_2$ denote eigenvalues and eigenvectors (principal components) of the empirical covariance matrix

$$\hat{\Sigma} = \frac{1}{n} \sum_i X_i X_i^T$$

Insight: $l_1 \approx p \lambda_1, \ l_2 \approx p \lambda_2 \Rightarrow l_1 - l_2 \approx p(\lambda_1 - \lambda_2)$

For any $k = 1, 2, \ldots$ the first k principal components (asymptotically) explain a fixed percentage of the variability of X_i. Let

- $\mathcal{E}_{p,k} \subset \mathbb{R}^p$ - k-dimensional eigenspace spanned by $\zeta_1, dots, \zeta_k$
- $\mathcal{E}_k \subset L^2([a, b])$ - k-dimensional eigenspace spanned by $\gamma_1, dots, \gamma_k$
- \mathbb{L} - set of all k-dimensional linear subspaces of $L^2([a, b])$

As $p \to \infty$

$$
\mathbb{E} \left(\inf_{f \in \mathcal{E}_{p,k}} \frac{1}{p} \sum_{j=1}^{p} \left| X_i(t_j) - f(t_j) \right|^2 \right) \to \mathbb{E} \left(\inf_{f \in \mathcal{E}_k} \int_I \left| X_i(t) - f(t) \right|^2 \right)
$$

$$
= \inf_{\mathcal{L}_k \in \mathbb{L}} \mathbb{E} \left(\inf_{g \in \mathcal{L}_k} \int_I \left| X_i(t) - g(t) \right|^2 \right)
$$

$$
= \sum_{j \geq k+1} \lambda_j
$$

X_i a.s. ν-times continuously differentiable: $\sum_{j \geq k+1} \lambda_j = O(k^{-2\nu})$
Regression on functional principal components (continuous case):
$L^2(I)$ will be endowed with the inner product $\langle f, g \rangle = \int_I f(t)g(t)dt$ and its associated norm $\| . \|$.

With $\delta_{ri} = \langle X_i, \gamma_r \rangle$ and $\beta_r := \langle \beta, \gamma_r \rangle$ the functional regression model $Y_i = \langle \beta, X_i \rangle + \epsilon_i$ implies

$$Y_i = \sum_{r=1}^{\infty} \beta_r \delta_{ri} + \epsilon_i, \quad \beta(t) = \sum_{r=1}^{\infty} \beta_r \gamma_r(t)$$

Note: $var(\delta_{ri}) = \lambda_r, \lambda_r \rightarrow 0$ as $r \rightarrow \infty$

$$\sum_{r=1}^{\infty} \beta_r \delta_{ri} = \sum_{r=1}^{\infty} \beta^*_r \delta^*_r, \quad \beta^*_r := \lambda_r \beta_r, \quad \delta^*_r := \frac{\delta_{ri}}{\lambda_r}$$

“Sparseness”: If $|\beta_r| \leq D, D < \infty$ for all $r = 1, 2, \ldots$, for any $\epsilon > 0$ there exists a $k_\epsilon \in \mathbb{N}$ such that $\sum_{r>k_\epsilon} |\beta^*_r| \leq \epsilon$
Standard approach: Truncation

For a prespecified $k \in \mathbb{N}$ estimates $\hat{\beta}_r$ are determined from

$$Y_i \approx \sum_{r=1}^{k} \beta_r \delta_{ri} + \epsilon_i,$$

where $\hat{\delta}_{ri} = \langle X_i, \hat{\gamma}_r \rangle$ are determined from estimated functional principal components; k - smoothing parameter

Then $\hat{\beta} = \sum_{r=1}^{k} \hat{\beta}_r \hat{\gamma}_r$

- Cai and Hall (2006) derive optimal rates of convergence of $|\int_I \beta(t)x(t) - \int_I \hat{\beta}(t)x(t)dt|$ for a pre-specified, fixed function x.

- Hall and Horowitz (2007) provide optimal convergence rates for the L^2-distance $\|\beta - \hat{\beta}\|$.
The smoothing spline approach

We assume that the functions X_i are observed at p equidistant points $t_1, \ldots, t_p \in I$, $I = [0, 1]$. Let $\tilde{Y}_i := Y_i - \bar{Y}$, $\tilde{X}_i = X_i - \bar{X}$

Smoothing splines estimator of β: For some $m = 1, 2, \ldots$ and a smoothing parameter $\rho > 0$ an estimate $\hat{\beta}$ of β is determined by minimizing

$$
\frac{1}{n} \sum_{i=1}^{n} \left(\tilde{Y}_i - \frac{1}{p} \sum_{j=1}^{p} b(t_j) \tilde{X}_i(t_j) \right)^2 + \rho \left(\frac{1}{p} \sum_{j=1}^{p} \pi_b(t_j)^2 + \int_{0}^{1} b^{(m)}(t)^2 dt \right)
$$

over all functions b in the Sobolev space $W^{m, 2}(I) \subset L^2(I)$, where $\pi_b(t) = \sum_{l=1}^{m} \psi_{b,l} t^{l-1}$ with

$$
\sum_{j=1}^{p} (b(t_j) - \pi_b(t_j))^2 = \min_{\psi_1, \ldots, \psi_m} \sum_{j=1}^{p} (b(t_j) - \sum_{l=1}^{m} \psi_l t^{l-1})^2.
$$

π_b denotes the best possible approximation of $(b(t_1), \ldots, b(t_p))$ by a polynomial of degree $m - 1$.

Any solution \(\hat{\beta} \) has to be an element of the space \(NS^m(t_1, \ldots, t_p) \) of *natural splines* of order \(2m \) with knots at \(t_1, \ldots, t_p \).

\(NS^m(t_1, \ldots, t_p) \) is a \(p \)-dimensional linear space of functions with \(v^{(m)} \in L^2(I) \).

There exists a canonical one-to-one mapping between \(\mathbb{R}^p \) and the space \(NS^m(t_1, \ldots, t_p) \) in the following way. For any vector \(\mathbf{w} = (w_1, \ldots, w_p)^\top \in \mathbb{R}^p \), there exists a unique natural spline interpolant \(s_{\mathbf{w}} \) with \(s_{\mathbf{w}}(t_j) = w_j, j = 1, \ldots, p \). With \(\mathbf{A} \) denoting the \(p \times p \) matrix with elements \(a_i(t_j) \), \(s_{\mathbf{w}} \) is given by

\[
s_{\mathbf{w}}(t) = \mathbf{a}(t)^\top (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{A}^\top \mathbf{w}.
\]

Important property:

\[
\int_0^1 s_{\mathbf{w}}^{(m)}(t)^2 \, dt \leq \int_0^1 f^{(m)}(t)^2 \, dt \text{ for any other function } f \in \mathcal{W}^{m,2}(I)
\]

with \(f(t_j) = w_j, j = 1, \ldots, p \).
\[\Rightarrow \hat{\beta} = (\hat{\beta}(t_1), \ldots, \hat{\beta}(t_p))^\top \in \mathbb{R}^p \text{ minimizes} \]

\[\frac{1}{n} \sum_{i=1}^{n} \left(\tilde{Y}_i - \frac{1}{p} \sum_{j=1}^{p} b(t_j) \tilde{X}_i(t_j) \right)^2 + \rho \left(\frac{1}{p} \sum_{j=1}^{p} \pi_b(t_j)^2 + \int_{0}^{1} s_b^{(m)}(t)^2 dt \right), \]

with respect to all vectors \(b = (b(t_1), \ldots, b(t_p))^\top \in \mathbb{R}^p \).

Matrix Notation:

- \(Y = (\tilde{Y}_1, \ldots, \tilde{Y}_n)^\top, \ X_i = (\tilde{X}_i(t_1), \ldots, \tilde{X}_i(t_p))^\top \) for all \(i = 1, \ldots, n \), \(\beta = (\beta(t_1), \ldots, \beta(t_p))^\top \) and \(\epsilon = (\epsilon_1, \ldots, \epsilon_n)^\top \)
- \(X: n \times p \) matrix with general term \(\tilde{X}_i(t_j) \) for all \(i = 1, \ldots, n, j = 1, \ldots, p \).
- \(P_m: p \times p \) projection matrix projecting into the \(m \)-dimensional linear space \(E_m := \{ w = (w_1, \ldots, w_p)^\top \in \mathbb{R}^p | w_j = \sum_{l=1}^{m} \theta_l t_j^{l-1}, j = 1, \ldots, p \} \) of all (discretized) polynomials of degree \(m - 1 \).
we have \(\int_0^1 s_b^{(m)}(t)^2 dt = b^\top B_m^* b \)

\[B_m^* = A (A^\top A)^{-1} \left[\int_0^1 a^{(m)}(t)a^{(m)}(t)^\top dt \right] (A^\top A)^{-1} A^\top \] is a \(p \times p \) matrix.

With \(B_m := P_m + \rho B_m^* \), spline minimization is equivalent to solving

\[
\min_{B \in \mathbb{R}^p} \left\{ \frac{1}{n} \left\| Y - \frac{1}{p} X b \right\|^2 + \frac{\rho}{p} b^\top B_m b \right\},
\]

where \(\| . \| \) stands here for the usual Euclidean norm, and

\[
\hat{\beta} = \frac{1}{np} \left(\frac{1}{np^2} X^\top X + \frac{\rho}{p} B_m \right)^{-1} X^\top Y = \frac{1}{n} \left(\frac{1}{np} X^\top X + \rho B_m \right)^{-1} X^\top Y.
\]

\[\hat{\beta} = s\hat{\beta} \] constitutes our final estimator of \(\beta \),

\[\hat{\beta}_0 = \overline{Y} - \langle \hat{\beta}, \overline{X} \rangle \] estimates the intercept \(\beta_0 \).

All eigenvalues of the matrix \(B_m \) are strictly positive which ensures existence as well as uniqueness of a solution.
Asymptotic Theory

$L^2(I)$ will be endowed with the inner product
\[\langle f, g \rangle = \int_I f(t)g(t)\,dt \]
and its associated norm $\|\cdot\|$.

Asymptotic performance of the estimator is evaluated with respect to its prediction error.

We consider $\|\hat{\beta} - \beta\|_\Gamma$, where $\|\cdot\|_\Gamma$ is the L^2 semi-norm defined by
\[\|u\|_\Gamma^2 = \langle \Gamma u, u \rangle \quad u \in L^2(I), \]
Here, Γ is the covariance operator of X given by
\[\Gamma u = \mathbb{E} \left(\langle X - \mathbb{E}(X), u \rangle X - \mathbb{E}(X) \right), \quad u \in L^2(I). \]

Note: If X_{n+1} is a random function possessing the same distribution as X_i, but independent of the sample X_1, \ldots, X_n, then
\[
\mathbb{E} \left(\left(\hat{\beta}_0 + \int_I \hat{\beta}(t)X_{n+1}(t)\,dt - \beta_0 - \int_I \beta(t)X_{n+1}(t)\,dt \right)^2 \Bigg| \hat{\beta}_0, \hat{\beta} \right) \\
= \|\hat{\beta} - \beta\|_\Gamma^2 + O_P(n^{-1}).
\]
Assumptions

(A.1) β is m times differentiable and $\beta^{(m)}$ belongs to $L^2(I)$.

(A.2) For every $\delta > 0$, there exist constants $C_3, C_4 < +\infty$ such that, $\mathbb{P}(|X_i(t)|^2 \leq C_3) \geq 1 - \delta$ and

$$
\mathbb{P} \left(|X_i(t) - X_i(s)| \leq C_4 |t - s|^\kappa, \ t, s \in I \right) \geq 1 - \delta
$$

(A.3) For some constant $C_5 < \infty$ and all $k \in \mathbb{N}^\star$ there is a k-dimensional linear subspace \mathcal{L}_k of $L^2(I)$ with

$$
\mathbb{E} \left(\inf_{f \in \mathcal{L}_k} \sup_t |X(t) - f(t)|^2 \right) \leq C_5 k^{-2q}.
$$

(A.4) There exists a constant $C_7 < \infty$ such that

$$
\text{Var} \left(\frac{1}{n} \sum_i \langle X_i - \mathbb{E}(X), \zeta_r \rangle \langle X_i - \mathbb{E}(X), \zeta_s \rangle \right)
\leq \frac{C_7}{n} \mathbb{E}(\langle X - \mathbb{E}(X), \zeta_r \rangle^2)\mathbb{E}(\langle X - \mathbb{E}(X), \zeta_s \rangle^2)
$$

holds for all n and all $r, s = 1, 2, \ldots$, $\|\overline{X} - \mathbb{E}(X)\|^2 = O_P(n^{-1})$.
Lemma

For some $q_1 = 0, 1, 2, \ldots$ and $0 \leq q_2 \leq 1$ assume that X_i is almost surely q_1-times continuously differentiable and that there exists some $C_6 < \infty$ such that

$$\mathbb{E} \left(\sup_{|t-s| \leq d} \left| X_i^{(q_1)}(t) - X_i^{(q_1)}(s) \right|^2 \right) \leq C_6 d^{-2q_2}$$

holds for all $d > 0$. There then exists a constant $C_7 < \infty$, only depending on q_1, q_2, such that for all $k = 1, 2, \ldots$

$$\mathbb{E} \left(\inf_{f \in \mathcal{P}_k} \sup_t |X_i(t) - f(t)|^2 \right) \leq C_7 C_6 k^{-2(q_1+q_2)},$$

where \mathcal{P}_k denotes the space of all polynomials of order k on I.
Theorem

Under (A.1) - (A.4) as well as $np^{-2\kappa} = O(1)$, $\rho \to 0$, $1/(n\rho) \to 0$ as $n, p \to \infty$:

$$\left\| \hat{\beta} - \beta \right\|_\Gamma^2 = O_P \left(\rho + (n\rho^{2m+2q+1})^{-1} + n^{-\left(2q+1\right)/2} \right),$$

Out-of-sample predictions:

If $q \geq 1/2$ and $\rho \sim n^{-\left(2m+2q\right)/\left(2m+2q+1\right)}$ then generally

$$\mathbb{E} \left[\left(\hat{\beta}_0 + \int\hat{\beta}(t)X_{n+1}(t)dt - \beta_0 - \int_0^1 \beta(t)X_{n+1}(t)dt \right)^2 \mid \hat{\beta}_0, \hat{\beta} \right] = \left\| \hat{\beta} - \beta \right\|_\Gamma^2 + O_P(n^{-1}) = O_P(n^{-\left(2m+2q+1\right)/\left(2m+2q+2\right)}).$$
Optimality of the convergence rate

- $\mathcal{P}_{q,C}$ - space of all probability distributions on $L^2([0, 1])$ with $\mathbb{E}(X_i) = 0$, $\sup_t |X_i(t)| \leq C$, and $\sum_{j=k+1}^{\infty} \lambda_j \leq Ck^{-2q}$ for all sufficiently large k.
- $\mathcal{C}_{m,D}$ - space of all m-times continuously differentiable functions β with $\int_0^1 (\beta^{(j)}(t))^2 dt \leq C$ for all $j = 0, 1, \ldots, m$.
- For given $\beta \in \mathcal{C}_{m,D}$, probability distribution $P \in \mathcal{P}_{q,C}$ and i.i.d. random functions X_1, \ldots, X_n, $X_i \sim P$, let $\hat{a}(\beta, P)$ denote an arbitrary estimator of β based on corresponding data (Y_i, X_i), $i = 1, \ldots, n$.

Proposition

Let c_n denote an arbitrary sequence of positive numbers with $c_n \to 0$ as $n \to \infty$, and let $2q = 1, 3, 5, \ldots$. Then

$$\lim_{n \to \infty} \sup_{P \in \mathcal{P}_{q,C}} \sup_{\beta \in \mathcal{C}_{m,D}} \inf_{\hat{a}(\beta, P)} \mathbb{P}\left(\|\beta - \hat{a}(\beta, P)\|_\Gamma \geq c_n \cdot n^{-(2m+2q+1)/(2m+2q+2)} \right) = 1$$
Prediction for fixed function x

Theoretical Results: Cai and Hall (2006)

- Let $\lambda_1 \geq \lambda_2 \geq \ldots$ denote the eigenvalues of Γ, and let $\gamma_1, \gamma_2, \ldots$ be a orthonormal basis of corresponding eigenfunctions.

- $X_i(t) = \sum_r x_{i,r} \gamma_r(t)$, $E(x_{i,r}^2) = \lambda_r$, $\text{cov}(x_{ir}, x_{is}) = 0$, $r \neq s$

- Decompositions: $\beta = \sum_r \beta_r \gamma_r(t)$, $x = \sum_r x_r \gamma_r(t)$

- Estimator $\hat{\beta} = \sum_{r=1}^{L} \hat{\beta}_r\hat{\gamma}_r$, L - smoothing parameter

Rates of convergence (Cai and Hall): It is assumed that there exist some $\nu \in \mathbb{R}$ and $0 < D_0 < \infty$ such that for all $r = 1, 2, \ldots$

\[
D_0^{-1} r^\nu \leq \frac{x_r^2}{\lambda_r} \leq D_0 r^\nu
\]

- Parametric rates of convergence if $\nu \leq -1$:
 \[
 |\langle \hat{\beta}, x \rangle - \langle \beta, x \rangle|^2 = O(n^{-1}) \quad \text{[or } O(n^{-1} \log n)\text{]}
 \]

- Nonparametric rates of convergence for $\nu > -1$ which also depend on the speed of decrease of $|\beta_r|$ as $r \to \infty$
Prediction for a random function X_{n+1}

Gaussian distribution:

$$X_{n+1} = \sum_{r} x_{n+1,r} \gamma_r(t), \ x_{n+1,r} \sim N(0, \lambda_r), \ x_{n+1,r} \text{ independent of } x_{n+1,s}$$

$$\Rightarrow \mathbb{P} \left(D_0^{-1} r^\nu \leq \frac{x_{n+1,r}^2}{\lambda_r} \leq D_0 r^\nu \text{ for all } r = 1, 2, \ldots \right) = 0 \quad \text{if } \nu \leq 0$$

- Assumption (A.3): $\sum_{r=k+1}^\infty \lambda_r = O(k^{-2q})$
 $$\Rightarrow \text{One may assume } \lambda_r = O(r^{-2q-1})$$

- Assume that $\gamma_1, \gamma_2, \ldots$ define an appropriate basis for approximating smooth functions and that
 $$\inf_{f \in \text{span}\{\gamma_1, \ldots, \gamma_k\}} \|\beta - f\|^2 = \sum_{r=k+1}^\infty \beta_r^2 = O(k^{-2m}) \text{ as well as } \beta_r^2 = O(r^{-2m-1}).$$

For any $\nu > 0$ the results of Cai and Hall (2006) then imply

$$\langle \hat{\beta} - \beta, X_{n+1} \rangle^2 = O_P\left(n^{-\left(2m+2q+1-2\nu\right)/(2m+2q+2)}\right),$$
L^2-distances $\|\hat{\beta} - \beta\|$

A statistically very different problem consists in an optimal estimation of β by $\hat{\beta}$ with respect to the usual L^2-norm.

- Under (A.1)-(A.4): Components of β which are in $\ker(\Gamma)$ are not identifiable; generally $\|\hat{\beta} - \beta\|^2 = O_P(1)$

- Any results on rates of convergence of $\hat{\beta}$ will heavily depend on how well X and β “fit” together.

- Oversmoothing: an estimator minimizing $\|\hat{\beta} - \beta\|^2$ will have to rely on $\rho \gg n^{-(2m+2q+1)/(2m+2q+2)}$

$$\rho \sim n^{-(2m+2q+1)/(2m+2q+2)} \Rightarrow \|\hat{\beta} - \mathbb{E}_e(\hat{\beta})\|^2 = O_P(n^{-1/(2m+2q+2)})$$

Hall and Horowitz (2007): $\hat{\beta} = \sum_{r=1}^{k} \hat{\beta}_r \hat{\gamma}_r$

If $\lambda_r - \lambda_{r+1} \geq C \cdot r^{-2q-2}$, $\lambda_r \geq C^* r^{-2q-1}$, $|\beta_r| \leq C^{**} r^{-\alpha}$, $k \sim n^{1/(2q+2\alpha+1)}$, then under some additional regularity conditions

$$\|\hat{\beta} - \beta\|^2 = O_P \left(n^{-\frac{2\alpha-1}{2q+2\alpha+1}}\right)$$

More general results: Cardot and Johannes (2008), Johannes (2008)
Choice of the smoothing parameter

Similar to ordinary nonparametric regression an optimal smoothing parameter ρ may be estimated by

- leave-one-out cross-validation
- Generalized cross-validation (GCV)

The GCV criterion takes the form

$$GCV_m(\rho) = \frac{1}{n} \sum_{i=1}^{n}(Y_i - \hat{Y}_i)^2 \frac{1}{(1 - n^{-1} Tr(H(\rho)))^2},$$

where

$$H(\rho) := (np)^{-1}X \left(\frac{1}{np^2} X^\tau X + \frac{\rho}{p} A_m \right)^{-1} X^\tau$$
Theoretical justification of GCV

\[
ASE_m(\rho) := \frac{1}{n} \sum_i \left[\langle X_i - \bar{X}, \beta \rangle - \frac{1}{p} \sum_j (X_i(t_j) - \bar{X}(t_j)) \hat{\beta}_{\rho,m}(t_j) \right]^2
\]

Proposition 2: Assume (A.1)-(A.3), \(np^{-2\kappa} = O(1) \),
\(\mathbb{E}(\exp(\delta \epsilon_i^2)) < \infty \) for some \(\delta > 0 \).

- \(m \) fixed; \(\hat{\rho} \) minimizer of GCV(\(\rho \)) over \(\rho \in \left[n^{-2m+\delta}, \infty \right), \delta > 0 \)

\[
|ASE_m(\hat{\rho}) - ASE_m(\rho_{opt})| = O_P(n^{-\frac{1}{2}} ASE_m(\rho_{opt})^{\frac{1}{2}})
\]

- \(\hat{m}, \hat{\rho} \) minimizers of GCV over \(\rho \in \left[n^{-2m+\delta}, \infty \right), \delta > 0 \), and \(m = 1, \ldots, M_n, M_n \leq n/2 \)

\[
|ASE_{\hat{m}}(\hat{\rho}) - ASE_{m_{opt}}(\rho_{opt})| = O_P(n^{-\frac{1}{2}} ASE_{m_{opt}}(\rho_{opt})^{\frac{1}{2}} \log M_n),
\]
The case of a noisy covariate

- Errors-in-variable problem: In practice the true functional values $X_i(t_j)$ are often not directly observable. There only exist discrete observations contaminated with several kind of errors.

(More realistic) observational model:

$$W_i(t_j) = X_i(t_j) + \delta_{ij}, \quad i = 1, \ldots, n, j = 1, \ldots, p,$$

where $(\delta_{ij})_{i=1,\ldots,n,j=1,\ldots,p}$ is a sequence of independent real random variables with $\mathbb{E}_\epsilon(\delta_{ij}) = 0$, $\mathbb{E}_\epsilon(\delta_{ij}^2) = \sigma_\delta^2$, as well as $\mathbb{E}_\epsilon(\delta_{ij}^4) \leq C_9 < \infty$.

The goal is then to introduce some corrections in the estimator $\hat{\beta}$ in order to account for this additional error.
Construction of an estimator

Under our assumptions we obtain the representation

\[\frac{1}{np^2} W^\tau W = \frac{1}{np^2} X^\tau X + \frac{\sigma_\delta^2}{p^2} I_p + R, \]

where \(R \) is a \(p \times p \) matrix such that its largest singular value is of order \(O_P \left(\frac{1}{n^{1/2}p} \right) \)

\[\Rightarrow \frac{1}{np^2} W^\tau W - \frac{\sigma_\delta^2}{p^2} I_p \text{ is used to approximate } \frac{1}{np^2} X^\tau X \]

Estimation of the error variance \(\sigma_\delta^2 \):

\[\hat{\sigma}_\delta^2 = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{6(p-2)} \sum_{j=2}^{p-1} [W_i(t_{j-1}) - W_i(t_j) + W_i(t_{j+1}) - W_i(t_j)]^2. \]

Corrected estimator:

\[\hat{\beta}_W = \frac{1}{np} \left(\frac{1}{np^2} W^\tau W - \frac{\hat{\sigma}_\delta^2}{p^2} I_p + \frac{\rho}{p} A_m \right)^{-1} W^\tau Y \]
Theoretical results

Additional assumption:

\[(A.5)\] For every \(\delta > 0\) there exists a constant \(C_\beta < \infty\) such that

\[
\frac{1}{\rho^{1/2}} \left\| \frac{1}{np} \mathbf{X}^\tau \mathbf{X} \beta \right\| > C_\beta,
\]

holds with probability larger or equal to \(1 - \delta\).

Assumption (A.5) essentially means that \(\beta\) does not belong to the kernel of the covariance operator \(\Gamma\).

Theorem

Assume (A.1)- (A.5) as well as \(np^{-2\kappa} = O(1), \rho \to 0, 1/(n\rho) \to 0\) as \(n, p \to \infty\). Then

\[
\left\| \hat{\beta}_W - \hat{\beta} \right\|^2_{\Gamma} = O_P \left(\frac{1}{np\rho} + \frac{1}{n} + n^{-(2q+1)/2} \right).
\]
Rates of convergence

Upper bound for the rate of convergence of $\hat{\beta}_W$ for $q \geq 1/2$:

$$\left\| \hat{\beta}_W - \beta \right\|_\Gamma^2 = O_P \left(\rho + \left(n\rho^{\frac{1}{2m+2q+1}} \right)^{-1} + \frac{1}{np\rho} \right).$$

- the use of $\hat{\beta}_W$ results in the addition of the extra term $1/(np\rho)$ in the rate of convergence.
- For a choice of $\rho \sim n^{-\frac{(2m+2q+1)}{(2m+2q+2)}}$ we have $1/(np\rho) \sim n^{-1/(2m+2q+2)}/p$. This term is of order $n^{-\frac{(2m+2q+1)}{(2m+2q+2)}}$ for $p \sim n^{\frac{(2m+2q-1)}{(2m+2q+2)}}$.
- In the errors-in-variables context we reach the same rate of convergence as for correctly observed X_i, provided that p is large enough compared to n, i.e. $p \geq C_p \max(n^{1/2\kappa}, n^{\frac{(2m+2q-1)}{(2m+2q+2)}})$ for some positive constant C_p.
Application to ozone pollution forecasting

- **Data:** Observatoire Régional de l’Air en Midi-Pyrénées; measures of specific pollutants, as well as meteorological measures, are made each hour.

- Explanatory variable X_i: Curves representing repeated measurements of concentration in ozone during a day

- Response variable Y_i: Maximum of ozone to be measured the following day

- Each ozone concentration curve X_i is measured in $p = 24$ discretized (equispaced) points corresponding to hourly measurements and the size of the sample is $n = 474$.

- After centering the X_i's, we modelize the link between Y_i and X_i by a functional linear regression model.

Goal: For a curve X_{n+1} predict Y_{n+1} via

$$\hat{Y}_{n+1} = \int \hat{\beta}(t)X_{n+1}(t)dt,$$
Interval of prediction

- Assumption: $\epsilon_1, \ldots, \epsilon_{n+1}$ are i.i.d. with $\epsilon_i \sim \mathcal{N}(0, \sigma^2_\epsilon)$.
- σ^2_ϵ is consistently estimated by the empirical variance

$$\hat{\sigma}_\epsilon^2 = \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \frac{1}{p} \sum_{j=1}^{p} \hat{\beta}(t_j) X_i(t_j) \right)^2.$$

- Our theoretical results imply asymptotic normality of $\frac{Y_{n+1} - \hat{Y}_{n+1}}{\hat{\sigma}_\epsilon}$.

Given $\tau \in]0, 1[$, an asymptotic $(1 - \tau)$-prediction interval for Y_{n+1} is given by

$$\left[\hat{Y}_{n+1} - z_{1-\tau/2} \hat{\sigma}_\epsilon, \hat{Y}_{n+1} + z_{1-\tau/2} \hat{\sigma}_\epsilon \right],$$

where $z_{1-\tau/2}$ is the quantile of order $1 - \tau/2$ of the $\mathcal{N}(0,1)$ distribution.
Empirical results

We split the initial sample into two sub-samples:

- a learning sample \((X_i, Y_i)_{i=1,\ldots,n_l}, (n_l = 300)\), used to determine the estimator \(\hat{\beta}\),
- a test sample \((X_i, Y_i)_{i=n_l+1,\ldots,n_l+n_t}, (n_t = 174)\) used to evaluate the quality of the estimation.

- The procedure is applied using \(m = 2\) (cubic smoothing splines)
- The two estimators \(\hat{\beta}\) and \(\hat{\beta}_W\) are considered
- Smoothing parameters \(\rho\) are selected by generalized cross-validation

Resulting prediction errors \(EQM\left(\hat{\beta}\right) = \frac{1}{n_t} \sum_{i=n_l+1}^{n_l+n_t} (Y_i - \hat{Y}_i)^2:\n
- \(EQM\left(\hat{\beta}\right) = 281.97\) for \(\hat{\beta}\)
- \(EQM\left(\hat{\beta}_W\right) = 270.13\) for \(\hat{\beta}_W\)