Developing the automatic measurement of surface condition on local roads

Alex Wright
TRL Infrastructure Division
Group manager, Technology Development
mwright@trl.co.uk
Measuring condition at traffic-speed in the UK

- **UK condition surveys measure**
 - Longitudinal profile
 - Transverse profile
 - Texture profile
 - Cracking (automatic)
 - Geometry

- **Annual coverage**
 - TRACS: 40,000km motorway and trunk roads
 - SCANNER: 80,000km local road network

- **Surveys carried out to an end result specification**
Accredited Systems:
- Jacobs
 - Ramboll RST26, RST27
- WDM
 - RAV1, RAV2, RAV3, RAV4
- DCL
 - Roadware ARAN1, ARAN2

Portorož, Slovenia
UK local roads (rural) - SCANNER

Portorož, Slovenia
UK local roads (urban) - SCANNER
Use of the Data

- **Local use**
 - Parameters reported over 10m lengths for local use

- **Network use**
 - For trunk roads total length of poor values reported
 - Single HA performance indicator (PI)
 - For local roads a Road Condition Index (RCI) is produced every 10m
 - Reports “overall” condition score
 - Distribution of RCIs over the local authority defines network condition (LA Indicator)
 - Potential use in allocation of funding across authorities
Enhancing the use of data from local roads

- Local roads differ from trunk roads
- New methods required to maximise value of local road data
- Research to improve the use of the survey data
 - Measuring ride quality on local roads using shape data
 - Using texture to assess surface deterioration on local roads
 - Measuring edge deterioration on local roads
- Work concentrated on the use of shape data
- Began with consultation to find out what users needed in practice
“Shape” data collected at traffic-speed

Portorož, Slovenia
Consultation with engineers found that
- Little importance placed on longitudinal profile data
- Key structural measure is cracking and rutting
- Engineers desire a **reliable** assessment of **general ride quality** (functionality)
- But engineers key concern is defects giving rise to **bumps** (user complaints)

Concluded that methods needed to
- Reliably identify lengths with poor ride quality
- Identify general locations giving rise to bumps
Measuring ride quality - data collection

- A practical investigation to relate surface profile to user opinions on local roads
- Several routes surveyed, including sections known to be poor
- Profile data provided by HARRIS1 profilometer
 - Measurements in both wheel tracks (and across survey width)
- User surveys:
 - Car surveys
 - Motorbike survey
 - Utilising on-board data collection with GPS referencing
 - Reported on ride and bumps
 - Repeat surveys for consistency
Considering general ride quality

- Wavelet Decomposition
- PSD
- IRI, Ride Number, Profile Index
- MA and enhanced variance
- Coefficient de planeite
- Waveband Energy
- Standard Deviation

Portorož, Slovenia
General ride quality - wavelength response

- IRI
- 3m Variance

Portorož, Slovenia
Parameter for general ride quality

- Predicting general ride quality on local roads
 - 1-5m wavelength features cause the users most discomfort.
 - **3m enhanced variance** agreed best with user opinion of underlying ride quality. Other measurements agreed no better with the user’s opinion.
 - **10m enhanced variance** showed some agreement (effects of longer wavelengths on truck drivers).
 - Wavelengths over 20m - little or no agreement with user opinion.

- Effect of measurement (line)
 - Offside measurements contributed to 33% of agreement with user opinion.
 - Multiple measurement lines around the wheelpath did not improve agreement.
Measuring “Bumps” on local roads

- User surveys recorded bumps using button presses.
- Wavelet analysis suggested wavelengths of interest lie between 1 and 3m.
- Existing measurements (variance, IRI etc) did not reliably report the locations of the features causing this bump-like discomfort.

![Diagram showing normalised power vs wavelength with button press and no button press markers.](image-url)
Measuring “Bumps” on local roads

Portorož, Slovenia
A parameter for “Bumps” on local roads

- Considered many approaches, e.g.
 - 1.25m enhanced variance, change of vehicle acceleration, derivative of longitudinal profile (features too small to impact on a car’s tyre)

- The Central Difference Method
 - Calculates a “derivative” for each point along the road (profile measurements \{y_i\}, taken at distances \{x_i\} along the road):

 \[F'(x_i) = \frac{y_{i+1} - y_{i-1}}{x_{i+1} - x_{i-1}} \]

 - Similarly for \(F''\).
 - The maximum of these values is calculated over 1m lengths.
 - If \(\text{max}(F')\) and \(\text{max}(F'')\) both exceed set thresholds, then the length contains a bump and a value of “1” is reported for that length. Otherwise “0” is reported.
Measuring “Bumps” with the CDM – local roads

- Tests to review locations where the bump measure responded
 - Reported 84% of user button presses.
 - Potential high number of false positives.
 - Inspection of 3D profile and video showed features of note where CDM responds, but users had not always pressed the button.

- Concluded
 - This is an appropriate method for identifying “bumps”.
 - We should use a combination of this and 3m enhanced variance for assessing general ride and bump density on local roads.
Testing on trunk roads

Easting and Northing

Portorož, Slovenia
Measuring “Bumps” – trunk roads

- Applied to whole of trunk road and motorway network.
 - 0.17% of network reported to contain bumps

- Subset inspected in closer detail:
 - Inspected 3D profile for 10% of locations
 - Visual inspection on site of 1% of locations

- Where 3D profile inspected:
 - 87% contained obvious bumps
 - Further 10% showed general unevenness

- Where site inspected,
 - 64% showed visible bumps on site
 - 24% were not “bumps”, but were poor bridge joints
 - 3% were bumps at surface change
Measuring Edge deterioration - consultation

- Consultation with engineers found that
 - Edge deterioration universally considered an area for concern
 - Key requirement for a measure to aid in defining maintenance treatment
- Features of interest
 - Potholes in surface near edge
 - Overriding
 - Cracking of surface near edge
 - Edge supported or kerbed
 - Presence of patching
Developing parameters for Edge Deterioration

- A fully automated measure
- Utilising transverse profile data
 - Firstly Identify the edge strip
- Edge Roughness
 - Roughness within the edge strip
- Edge Stepping
 - Stepping at the nearside of the edge strip
- Transverse Variance
 - Assessing roughness across the pavement
Edge deterioration parameters

Portorož, Slovenia
The Edge deterioration parameters

- Transverse unevenness
- Edge roughness
- Edge step

Portorož, Slovenia
Testing the Edge deterioration parameters

Portorož, Slovenia
An Indicator for Edge Condition

- Four parameters provide a complicated picture of condition
 - Better to report the general edge condition
- The ‘Edge Deterioration’ indicator
 - Combines all four SCANNER Initial Edge Deterioration Parameters
 - Is a weighted combination of parameters after applying thresholds and normalisation
 - Provides a single number to the engineer
 - Is based on the logic of the SCANNER RCI

\[\text{Edge Det} = W_{\text{ry edge roughness}} + W_{\text{tv trans variance}} + W_{E1 \text{ edge step 1}} + W_{E2 \text{ edge step 2}} \]
Testing the indicator for Edge Condition

Comparison with site assessments

Portorož, Slovenia
Testing the indicator for Edge Condition

- Proportion of roads having significant edge deterioration by manual surveys and the Edge Deterioration Indicator

Portorož, Slovenia
Conclusions

- Traffic-speed surveys have become widely applied in the UK on local roads under SCANNER (>100,000km/year)
- Local roads have particular defects
- A research programme has developed a set of parameters for reporting local road condition using data collected at traffic-speed
- For ride quality
 - Enhanced variance
 - A bump measure
- For edge deterioration
 - A set of edge deterioration parameters
 - An edge condition indicator
- These new parameters were introduced into SCANNER in 2007 for network level reporting