Definition

A \((v_r)\) configuration (combinatorial, geometric) is \textit{polycyclic} if there exists an automorphism \(\alpha\) such that all orbits on points and on lines are of the same size.
Pappus configuration is polycyclic configuration (3-cyclic); The corresponding automorphism is

\[\alpha = (1 \, 2 \, 3)(4 \, 5 \, 6)(7 \, 8 \, 9) \]
Problems...

- “classification” of combinatorial polycyclic configurations
- which combinatorial polycyclic configurations admit realizations as (geometric) polycyclic configurations
“classification” of combinatorial polycyclic configurations

which combinatorial polycyclic configurations admit realizations as (geometric) polycyclic configurations
Classification of polycyclic configurations can be done via their \textit{quotient graphs}.

- Let G be the Levi (or incidence) graph of the k-cyclic configuration C for the automorphism α.

- The \textit{quotient graph} \tilde{G} of C for α is the (multi)graph, which is obtained from G by the identification of the vertices and lines from the same orbits of α.
Classification of polycyclic configurations can be done via their quotient graphs.

Let G be the Levi (or incidence) graph of the k-cyclic configuration C for the automorphism α.

The quotient graph \bar{G} of C for α is the (multi)graph, which is obtained from G by the identification of the vertices and lines from the same orbits of α.
Classification of polycyclic configurations can be done via their quotient graphs.

Let G be the Levi (or incidence) graph of the k-cyclic configuration C for the automorphism α.

The quotient graph \tilde{G} of C for α is the (multi)graph, which is obtained from G by the identification of the vertices and lines from the same orbits of α.
The Pappus configuration and its quotient graph for
$\alpha = (1\ 2\ 3)(4\ 5\ 6)(7\ 8\ 9)$
Levi graph of a polycyclic configuration is a \mathbb{Z}_n covering graph over its quotient graph (with appropriate voltages attached to its edges).
Voltage graph: triple \((G, \Gamma, \xi)\) where:
- \(G\) is directed graph
- \(\Gamma\) is a *voltage group*
- \(\xi : E(G) \rightarrow \Gamma; \xi(e)\) is *voltage*.

Covering graph \(G_\xi\) over \((G, \Gamma, \xi)\) is a graph with
- \(V(G_\xi) = V(G) \times \Gamma\)
- \(E(G_\xi) = \{(u, g)(v, g\xi(uv)) : uv \in E(G), g \in \Gamma\}\)
 Voltage graphs & covering graphs
Definitions

Voltage graph: triple \((G, \Gamma, \xi)\) where:
- \(G\) is directed graph
- \(\Gamma\) is a *voltage group*
- \(\xi : E(G) \rightarrow \Gamma; \xi(e)\) is *voltage*.

Covering graph \(G_\xi\) over \((G, \Gamma, \xi)\) is a graph with
- \(V(G_\xi) = V(G) \times \Gamma\)
- \(E(G_\xi) = \{(u, g)(v, g\xi(uv)) : uv \in E(G), g \in \Gamma\}\)
Petersen graph (left) is a covering graph over the voltage graph on the right with $\Gamma = \mathbb{Z}_5$.
The Pappus configuration and its quotient graph for $\alpha = (1\ 2\ 3)(4\ 5\ 6)(7\ 8\ 9)$

Combinatorial description of a geometric structure.
Cremona-Richmond configuration, \((15_3)\).

Configuration \((21_4)\).
Examples

Cremona-Richmond configuration, (15_3).

Configuration (21_4).

Marko Boben Polycyclic configurations
Configuration $C_4(k, (p_1, \ldots, p_n), (q_1, \ldots, q_n), t)$ is a polycyclic configuration with its incidence graph being a \mathbb{Z}_k covering graph over...
Configuration $C_4(k, (p_1, \ldots, p_n), (q_1, \ldots, q_n), t)$ is a polycyclic configuration with its incidence graph being a \mathbb{Z}_k covering graph over
C_4 configurations

Example

$C_4(7, (1, 2, 3), (3, 1, 2), 0)$

Which sequences p, q and number t are good?

Theorem

For given $n \geq 2$, $k \geq 7$ the sequences $p = (p_1, p_2, \ldots, p_n)$, $q = (q_1, q_2, \ldots, q_n)$, $1 \leq p_i, q_i < k/2$, and the number t determine a combinatorial $(nk)_4$ configuration $C_4(k, p, q, t)$ if and only if

$$p_i \neq q_i, \quad p_i \neq q_{i-1}, \quad i = 1, 2, \ldots, n. \quad (1)$$

For $n = 2$, in addition to (1), there are conditions

$$a - b + c - d \neq 0 \pmod{k}. \quad (2)$$

for any possible choice of a, b, c, d, where $a \in \{0, p_1\}$, $b \in \{0, q_1\}$, $c \in \{0, p_2\}$, $d \in \{t, t + q_2\}$.
Proof: Conditions (1) and (2) prevent the existence of 4-cycles in the covering graph over
Proposition

The dual of $C_4(k, (p_1, \ldots, p_n), (q_1, \ldots, q_n), t)$ is the configuration $C_4(k, (q_1, \ldots, q_{n-1}, q_n), (p_2, \ldots, p_n, p_1),$ $q_1 + \cdots + q_n - p_1 - \cdots - p_n + t)$.

Proof. First we reverse the direction of edges by substituting voltages v with $-v$, then we return them back to their original values by rotating them around vertices. The values which help us rotate the voltages accumulate on the last edge giving us the new value for t.\hfill \square
Proposition

The configuration $C_4(k, (p_1, p_2, \ldots, p_n), (q_1, q_2, \ldots, q_n), t)$ is connected if and only if $\gcd(k, p_1, \ldots, p_n, q_1, \ldots, q_n, t) = 1$.

Proof: The Levi graph of C_4, which is a \mathbb{Z}_k covering graph on G/\approx, is connected precisely when gcd of all voltages and k is 1.
Proposition

The configuration $C_4(k, (p_1, p_2, \ldots, p_n), (q_1, q_2, \ldots, q_n), t)$ is isomorphic to

$$C_4(k, (p_i, p_{i+1}, \ldots, p_n, p_1, \ldots, p_{i-1}),$$

$$(q_i, q_{i+1}, \ldots, q_n, q_1, \ldots q_{i-1}), t) \quad \text{and} \quad C_4(k, (q_i, q_{i-1}, \ldots, q_1, q_n, \ldots, q_{i+1}),$$

$$(p_i, p_{i-1}, \ldots, p_1, p_n, \ldots, p_{i+1}), -t)$$

for each $i = 1, 2, \ldots, n$.

Proof: The first claim is true since the voltage t on G/\sim can be moved around the cycle to any non-adjacent pair of double edges. To prove the second set of identities we have to read the voltages in reverse order.
Necessary conditions on p, q, t to give a geometric geometric $C_4(k, p, q, t)$ configuration.

Theorem

If a polycyclic realization of $C_4(k, p, q, t)$ exists then the equation

$$\cos \frac{p_1 \pi}{k} \cos \frac{p_2 \pi}{k} \cdots \cos \frac{p_n \pi}{k} = \cos \frac{q_1 \pi}{k} \cos \frac{q_2 \pi}{k} \cdots \cos \frac{q_n \pi}{k}.$$

holds and

$$t = \frac{1}{2} \sum_{i=1}^{n} (p_i - q_i) \quad (3)$$

is an integer.
Proof: Let R_1 be the radius of the first orbit \mathcal{O}_1 (orbit on which a line has “span” p_1) and let R_2 be the radius of the second orbit \mathcal{O}_2 (orbit on which the same line has span q_1). Then

$$R_2 = \frac{\cos \frac{p_1 \pi}{k}}{\cos \frac{q_1 \pi}{k}} R_1$$

When we continue the construction we get

$$R_m = \frac{\cos \frac{p_m \pi}{k}}{\cos \frac{\pi q_m}{k}} \cdot \frac{\cos \frac{p_2 \pi}{k}}{\cos \frac{q_2 \pi}{k}} \cdot \frac{\cos \frac{p_1 \pi}{k}}{\cos \frac{q_1 \pi}{k}} R_1$$
Since the construction “closes” we get

\[R_1 = R_n = \frac{\cos \frac{p_n \pi}{k}}{\cos \frac{q_n \pi}{k}} \cdot \frac{\cos \frac{p_2 \pi}{k}}{\cos \frac{q_2 \pi}{k}} \cdot \frac{\cos \frac{p_1 \pi}{k}}{\cos \frac{q_1 \pi}{k}} R_1 \]

which gives the Cosine equation in the theorem.

Parameter \(t \) is the “combinatorial difference” between the first point of orbit \(O_1 \) and the point where the first line of the last line-orbit hits \(O_1 \).
Since the construction “closes” we get

\[R_1 = R_n = \frac{\cos \frac{p_n \pi}{k}}{\cos \frac{q_n \pi}{k}} \cdot \frac{\cos \frac{p_2 \pi}{k}}{\cos \frac{q_2 \pi}{k}} \cdot \frac{\cos \frac{p_1 \pi}{k}}{\cos \frac{q_1 \pi}{k}} \cdot R_1 \]

which gives the Cosine equation in the theorem.

Parameter \(t \) is the “combinatorial difference” between the first point of orbit \(O_1 \) and the point where the first line of the last line-orbit hits \(O_1 \).
We notice that each first point of orbit O_{i+1} is shifted for

$$\frac{1}{2}(p_i - q_i) \frac{2\pi}{k}$$

with respect to the first point of O_i.

Geometrically, this last constructed line must hit a point on O_1 and this difference, expressing it in the number of skipped points w.r. to the first point of O_1, is uniquely determined – it is

$$t = \frac{1}{2} \sum_{i=1}^{n} (p_i - q_i).$$

an must be an integer.
We notice that each first point of orbit O_{i+1} is shifted for

$$\frac{1}{2}(p_i - q_i) \frac{2\pi}{k}$$

with respect to the first point of O_i.

Geometrically, this last constructed line must hit a point on O_1 and this difference, expressing it in the number of skipped points w.r. to the first point of O_1, is uniquely determined – it is

$$t = \frac{1}{2} \sum_{i=1}^{n} (p_i - q_i).$$

an must be an integer.
C_4 configurations

Geometric C_4 configurations

$C_4(12, (1, 5), (4, 4), -1)$

$C_4(17, (1, 8, 4, 2), (3, 7, 5, 6), -3)$
Which non-trivial sequences p, q satisfy the “cos” equation?

<table>
<thead>
<tr>
<th>k</th>
<th>p, q</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>$(1, 5), (4, 4)$</td>
</tr>
<tr>
<td>15</td>
<td>$(1, 4), (3, 3); (2, 7), (6, 6); (3, 6), (5, 5)$</td>
</tr>
<tr>
<td>18</td>
<td>$(1, 6), (4, 5); (1, 8), (7, 6); (2, 7), (5, 6)$</td>
</tr>
<tr>
<td>24</td>
<td>$(1, 11), (8, 10); (2, 8), (5, 7); (2, 10), (8, 8); (3, 9), (6, 8)$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>$(1, 2, 4), (3, 3, 3)$</td>
</tr>
<tr>
<td>10</td>
<td>$(1, 1, 4), (2, 3, 3)$</td>
</tr>
<tr>
<td>15</td>
<td>$(1, 4, 6), (3, 5, 5); (2, 3, 7), (5, 5, 6)$</td>
</tr>
<tr>
<td>14</td>
<td>$(1, 1, 6), (3, 4, 5); (1, 2, 5), (3, 3, 4); (1, 3, 6), (2, 5, 5)</td>
</tr>
<tr>
<td>16</td>
<td>$(1, 2, 7), (3, 5, 6); (1, 4, 7), (2, 6, 6); (2, 2, 6), (3, 4, 5)$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>17</td>
<td>$(1, 2, 4, 8), (3, 5, 6, 7)$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Which non-trivial sequences p, q satisfy the “cos” equation?

<table>
<thead>
<tr>
<th>k</th>
<th>p, q</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>$(1, 5), (4, 4)$</td>
</tr>
<tr>
<td>15</td>
<td>$(1, 4), (3, 3); (2, 7), (6, 6); (3, 6), (5, 5)$</td>
</tr>
<tr>
<td>18</td>
<td>$(1, 6), (4, 5); (1, 8), (7, 6); (2, 7), (5, 6)$</td>
</tr>
<tr>
<td>24</td>
<td>$(1, 11), (8, 10); (2, 8), (5, 7); (2, 10), (8, 8); (3, 9), (6, 8)$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>$(1, 2, 4), (3, 3, 3)$</td>
</tr>
<tr>
<td>10</td>
<td>$(1, 1, 4), (2, 3, 3)$</td>
</tr>
<tr>
<td>15</td>
<td>$(1, 4, 6), (3, 5, 5); (2, 3, 7), (5, 5, 6)$</td>
</tr>
<tr>
<td>14</td>
<td>$(1, 1, 6), (3, 4, 5); (1, 2, 5), (3, 3, 4); (1, 3, 6), (2, 5, 5)$</td>
</tr>
<tr>
<td>16</td>
<td>$(1, 2, 7), (3, 5, 6); (1, 4, 7), (2, 6, 6); (2, 2, 6), (3, 4, 5)$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>17</td>
<td>$(1, 2, 4, 8), (3, 5, 6, 7)$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Are the conditions of the previous theorem sufficient?

Coincidence of points, lines, additional incidences must be considered...
Are the conditions of the previous theorem sufficient?

Coincidence of points, lines, additional incidences must be considered...
Are the conditions of the previous theorem sufficient?

Coincidence of points, lines, additional incidences must be considered...
To obtain a weak rotational realization we must avoid the coincidence of points and lines.

Proposition

Given a rotational representation of a $\mathcal{C}_4(k, p, q)$ configuration satisfying “Cos equation” and (3), there are points which geometrically coincide if and only if there exist proper subsequences $p' = (p_i, \ldots, p_j)$ and $q' = (q_i, \ldots, q_j)$, $0 < |j - i| < n - 1$, of p and q which already satisfy the Cos equation and (3).
Coincidence of points occurs in a rotational drawing of configuration $C_4(18, (1, 6, 7, 6), (4, 5, 1, 8))$ (left) while coincidence of lines occurs in a rotational drawing of is dual, $C_4(18, (4, 5, 1, 8), (6, 7, 6, 1))$ (right).
Configuration $C_4(15, (1, 4, 5, 5), (3, 3, 3, 6))$ has the property that there are four vertex orbits but only three radii. (Cos equation satisfied for a subvectors, but (3) is not.)
Accidental incidences

Weak rotational realizations of $C_4(12, (3, 3, 5, 1, 4, 2), (4, 2, 3, 3, 5, 1))$ (left) and $C_4(12, (1, 2, 5, 3), (3, 4, 4, 2))$ (right) containing additional incidences, lines with five or six points on them.

Remark: geometric $C_4(k, (p_1, p_2), (q_1, q_2))$ configurations – astral (v_4) configurations (B. Grünbaum, L. Berman).

Remark: geometric $C_4(k, (p_1, p_2), (q_1, q_2))$ configurations – *astral* (v_4) configurations (B. Grünbaum, L. Berman).