Broken symmetries in financial markets

Damien Challet

Institute for Scientific Interchange, Turin
Exchange goods without a market
Exchange goods without a market

- Find something to buy/sell
- Find somebody interested
- Think of a fair price
- Agree on a price
- Exchange goods
Internet era

- Find something to sell/buy
- Go to auction site
- Auctioneers determine price
- Goods travel by post

MARKET!!!!

The more bidders, the better the price
Role of financial markets

Centralised markets
- Exchange goods
- Speed
- Good prices
- Low transaction costs

The more traders, the better the prices
Financial markets

Real goods:
- Stocks
- Commodities (oil, gold, ...)
- Foreign exchange
Financial markets

Real goods:
- Stocks
- Commodities (oil, gold, ...)
- Foreign exchange

Risk-related goods:
- Bonds
- Futures
- Options
- Insurance
- Structured products
- ...
Double auction

eBay

- One item
- Several buyers: bids
- Several sellers: asks
1 year = 1 Tb of data

- Daily CERN-like experiment
- Much noise
- What to measure?
- How many computers?
Symmetries

- buy ≡ sell
- buy, sell ≡ sell/buy

Efficient markets

- $E[p(t + 1)] = p(t)$
- $r_\tau(t) = \log p(t + \tau) - \log p(t)$: price return

\[
E[r(t)r(t + T)] = 0
\]

(necessary condition)
Why symmetry in markets?

Because markets hate asymmetry. Any asymmetry is detected and corrected.
Why symmetry in markets?

Because markets hate asymmetry

Any asymmetry is detected and corrected

Quality \rightarrow reputation
Why markets
Symmetric markets?
Broken symmetries

Modelling

Simplest
- Bachelier: Gaussian uncorrelated random walk
- Mandelbrodt: Levy uncorrelated random walk
- Now: power-law random walks with long memory (stay awake)
Typical agent-based model

- N agents
- $S_i(t)$ state of agent $i \in \{-1, 0, 1\}$
- $S_i(t + 1) = \text{sign} \left[\sum_j J_{i,j} S_j(t) + h_i S_i(t) + F \right]$
- $\log p(t + 1) = \log p(t) + \sum_i S_i(t)$
Buy/sell

Long position

- Time t, buy N shares
- Time t', sell N shares
- Capital gain:

$$N[p(t' + 1) - p(t + 1)] - T(N)$$

where $T(N)$ transaction costs
Buy/sell

Long position
- Time t, buy N shares
- Time t', sell N shares
- Capital gain:

$$N[p(t' + 1) - p(t + 1)] - T(N)$$

where $T(N)$ transaction costs

Short position
- Time t, sell N shares
- Time t', buy N shares
- Capital gain:

$$-N[p(t' + 1) - p(t + 1)] - T(N)$$

where $T(N)$ transaction costs

Broken symmetries: $T(N)$, maximum gain
Limit/market order

- Market order: BUY NOW!
- Limit order: buy at price p

Bouchaud et al:
- Cost limit order = Cost market order electronic markets
- Cost limit order < Cost market order markets w/ human
Microscopic asymmetry

- More buy limit orders than sell orders
- Limit order markets have a long memory:
Microscopic asymmetry

- More buy limit orders than sell orders
- Limit order markets have a long memory:
 - Buy 100, Sell 100 \(\not\equiv\) Sell 100, Buy 100
Microscopic asymmetry

- More buy limit orders than sell orders
- Limit order markets have a long memory:
 - Buy 100, Sell 100 NOT ≡ Sell 100, Buy 100
 - Buy 100, Buy 10 NOT ≡ Buy 10, Buy 100
Why markets
Symmetric markets?
Broken symmetries

Winning ratios

Measures of success:
- % of successful trades
- won/(won + lost)

Distribution of gains (trend followers) (Bouchaud Potters):
Heterogeneity

- information cost
- trading frequency
- wealth
- risk profile
- annual turnover

trading frequency \leftrightarrow wealth, risk profile, turnover
Asymmetric information

information cost \rightarrow heterogeneity
- processing power
- sources of information
- education
- honesty (insider information)
(In-)efficient markets

- $E[r(t)] = 0$ TRUE
- $E[r(t) - T|X] \neq 0$?
- What is X?
- How many of them?

Symmetry breaking, phase transition:

$$H = \sum_X E[r(t) - T|X]^2 > 0$$
In real markets?

- $H > 0$ ALWAYS
- Risk?
- $\frac{H}{(\delta H)^2}$ significant?
- $H > 0$ stabilizing?
Agent-based models

Usual aim: reproduce market behavior

Most important ingredient
- predictability H
- central to real life
- *how does it disappear?*
Why markets
Symmetric markets?
Broken symmetries

Trading frequency

- Who knows more about the market?
- Information spread?

Damien Challet
Broken symmetries in financial markets
Time reversal asymmetry

\[X(p(t)) = X(p(-t)) \]

- Humans not time reversal
- News not time reversal
- Markets?
 - who cares?
Measures of time reversal asymmetry

- Visually: Omori law
- autocorrelation NO
- asymmetry past/future.
Zumbach volatility asymmetry

- price returns noisy
- most likely asymmetric

Historical volatility over T units of time of τ seconds:
$$\sigma_h(T, \tau)$$

Realized volatility over T units of time of τ seconds:
$$\sigma_r(T, \tau)$$
Why markets
Symmetric markets?
Broken symmetries

\(P(\delta\sigma) \)

Broken symmetries in financial markets
Broken symmetries in financial markets
The mathematics of time reversal asymmetry

- 100s of models
- Only models with heterogeneous time scales OK

\[\sigma = \sum_n 2^{-\alpha n} \sigma_h(T_0 2^n, \tau) \]

- Information flows between time scales
- Put by hand
New route: Baldovin and Stella

Unit of time \(\tau = 1 \)

\[
 r_{t,T} = \ln p(t + T) - \ln p(t)
\]

\(t \neq t' \)

\[
 E(r_{t,1}, r_{t',1}) = 0
\]

(no linear arbitrage)

price follows random walk

\[
 E[r^2] \propto T^{2D}
\]

\[
 P_T(r) = \frac{1}{T^D} g \left(\frac{r}{T^D} \right)
\]
“Renormalisation”: $T \rightarrow 2T$

\[P_{2T}(r) = \frac{1}{2^D} P_T \left(\frac{r}{2^D} \right) \]

\[r = r_1 + r_2 \]

\[P_{2T}(r) = \int dr_1 dr_2 \ p^{(2)}_{2T}(r_1, r_2) \delta(r - r_1 - r_2) \]

\[P_T(r_1) = \int dr_2 \ p^{(2)}_{2T}(r_1, r_2) \]

\[P_T(r_2) = \int dr_1 \ p^{(2)}_{2T}(r_1, r_2) \]
Why markets
Symmetric markets?
Broken symmetries

Consequences

Scaling:

\[E[(r_1 + r_2)^2] = E[(r_1)^2] + E[(r_2)^2] \]

\[(2T)^{2D} = 2(T^{2D}) \]

→ \(D = 1/2 \)
Consequences 2

Characteristic function

\[\tilde{p}_{2T}^{(2)}(k_1, k_2) \leftrightarrow p_{2T}^{(2)}(r_1, r_2) \]

\[
P_{2T}(r) = \int dr_1 dr_2 \ p_{2T}^{(2)}(r_1, r_2) \delta(r - r_1 - r_2)
\]

\[
\tilde{p}_{2T}^{(2)}(k, k) = \tilde{g}(\sqrt{2T}k)
\]

\[
P_T(r_1) = \int dr_2 \ p_{2T}^{(2)}(r_1, r_2)
\]

\[
\tilde{p}_{2T}^{(2)}(k, 0) = \tilde{g}(\sqrt{T}k)
\]
Why markets
Symmetric markets?
Broken symmetries

Consequences 2

\[\tilde{p}_{2T}^{(2)}(k_1, k_2) = \tilde{g} \left(\sqrt{Tk_1^2 + Tk_2^2} \right) \]

- Kind of multiplication in characteristic function space
- \text{Sqrt} introduces a dependency between } r_1 \text{ and } r_2.
- Generalisation to } n \text{ returns:

\[\tilde{p}_{2T}^{(2)}(k_1, \cdots, k_n) = \tilde{g} \left(\sqrt{Tk_1^2 + \cdots + Tk_n^2} \right) \]

→ Multivariate distribution from univariate distribution
Problems

- Constant volatility
- Time reversal invariant

Solution: dilute time so that
\[E[r^2(t)r(t + \tau)^2] \propto \tau^{-0.2} \]

Process simulation

Volatility decay
Asymmetry of time

(with P.P. Peirano)

Omori’s Law

\[N(t) = l = 2.4 \sigma \]
\[l = 2.1 \sigma \]
\[l = 1.8 \sigma \]
\[\alpha = 0.44 \]
\[\alpha = 0.35 \]
\[\alpha = 0.25 \]
Symmetric asymmetry of time

Zumbach-Lynch mugshot: B-S and USD/CHF (from ZL)

Visible time scale
No information cascade between time scales
External shocks only
Conclusions

- Markets are asymmetric
- Time reversal invariance breaking sorts out models
- Time scales: crucial ingredient
- Time scales and efficiency: open problem