1. (a) The characteristic polynomial \(p(s) = s^2 + 6s + k \) has roots \(-3 \pm \sqrt{9-k}\). The equation is underdamped if the roots are not real, and this happens for \(k > 9 \).

(b) This must be an underdamped equation, with a decaying sinusoidal solution. The zeros happen every \(P/2 = \pi/\omega_d \) time units, so \(\omega_d = 2 \). But \(\omega_d = \sqrt{k - 9} \), so \(k - 9 = 4 \) and \(k = 13 \).

2. (a) This happens only when one of the roots of the characteristic polynomial has a positive real part (or is repeated with nonnegative real part). Thus \(k \leq 9 \) to make the roots real. The term \(\sqrt{9-k} \) must be at least \(3 \) to make one of the roots positive: so \(k \leq 0 \). \(k = 0 \) leads to roots \(0, -6; 0 \) is not repeated so the solutions do not grow. We must have \(k < 0 \).

(b) A particular solution is \(x_p = 1 \) and since the roots of the characteristic polynomial are \(-3 \pm 2i\) the general homogeneous solution is \(x_h = e^{-3t}(a \cos(2t) + b \sin(2t)) \). The initial condition requires \(x_h(0) = 0, \dot{x}_h(0) = 1 \). The first gives \(a = 0 \), and then \(\dot{x}_h = be^{-3t}(2 \cos(2t) - 3 \sin(2t)) \), so \(1 = \dot{x}_h(0) = 2b \) and \(b = 1/2 \): \(x = 1 + (1/2)e^{-3t} \sin(2t) \).

3. (a) \(p(i\omega) = (13 - \omega^2) + 6i\omega \) so the amplitude of the sinusoidal solution is \(1/|p(i\omega)| = 1/\sqrt{(13-\omega^2)^2 + 36\omega^2} \).

(b) The phase lag is the argument of \(p(i\omega) \). It’s \(90^\circ \) when \(p(i\omega) \) is purely imaginary (with positive imaginary part). This happens when \(\omega = \sqrt{13} \).

4. (a) \(p(-1) = 1 - 6 + 13 = 8 \) so \(x_p = e^{-t}/8 \).

(b) \[
\begin{array}{c|ccc}
13 & x & = & at & + & b \\
 6 & \dot{x} & = & 0 & + & a \\
 1 & \ddot{x} & = & 0 & + & 0 \\
\hline
13t + 19 & = & 13at & + & (6a + 13b)
\end{array}
\]
so \(a = 1 \) and \(13b = 19 - 6 = 13 \) or \(b = 1 \): \(x_p = t + 1 \).

5. This is the real part of \(\ddot{z} + 6\dot{z} + 13z = e^{(-3+2i)t} \). The roots of the characteristic polynomial are \(-3 \pm 2i\), so the Exponential Response Formula fails and we must use the Resonant Response formula: \(p'(s) = 2s + 6, p'(-3 + 2i) = 2(-3 + 2i) + 6 = 4i \), so \(z_p = te^{(-3+2i)t}/(4i) = -(it/4)e^{-3t}e^{2it} \) and \(x_p = (t/4)e^{-3t} \sin(2t) \).