Op Amps Positive Feedback
Consider this circuit — *negative feedback*

\[
\frac{v_{IN}}{R_1} + R_2 v_{OUT} = -\frac{R_2}{R_1} v_{IN}
\]

and this — *positive feedback*

\[
\frac{v_{IN}}{R_1} + R_2 v_{OUT} = -\frac{R_2}{R_1} v_{IN}^{*}
\]

What's the difference?

Consider what happens when there is a perturbation...

Positive feedback drives op amp into saturation:

\[v_{OUT} \rightarrow \pm V_S\]
Static Analysis of Positive Feedback Ckt

\[v_{\text{OUT}} = A(v^+ - v^-) \]

\[= Av^+ \]

\[= A \left[\frac{v_{\text{OUT}} - v_{\text{IN}}}{R_1 + R_2} \cdot R_1 + v_{\text{IN}} \right] \]

\[= \frac{AR_1}{R_1 + R_2} v_{\text{OUT}} - \frac{AR_1 v_{\text{IN}}}{R_1 + R_2} + A v_{\text{IN}} \]

\[v_{\text{OUT}} \left[1 - \frac{AR_1}{R_1 + R_2} \right] = v_{\text{IN}} A \left[1 - \frac{R_1}{R_1 + R_2} \right] \]

\[v_{\text{OUT}} = \left[1 - \frac{R_1}{R_1 + R_2} \right] \cdot A v_{\text{IN}} = -\frac{R_2}{R_1} v_{\text{IN}} \]
Representing dynamics of op amp...

\[(v^+ - v^-) \]

\[R \quad C \quad v^* \quad + \quad v_o \]

\[+ \quad - \quad (v^+ - v^-) \quad + \quad - \quad Av^* \]

\[v^+ \quad v^- \]
Representing dynamics of op amp...

Consider this circuit and let's analyze its dynamics to build insight.

Let's develop equation representing time behavior of v_o.
Dynamics of op amp...

\[v_o = A v^* \quad \text{or} \quad v^* = \frac{v_o}{A} \]

\[RC \frac{dv^*}{dt} + v^* = v^+ - v^- \]

\[RC \frac{dv_o}{dt} + \frac{v_o}{A} = v^+ - v^- \]

\[= (\gamma - \bar{\gamma}) v_o \]

\[v^+ = \frac{v_o R_1}{R_1 + R_2} = \gamma v_o \]

\[v^- = \frac{v_o R_3}{R_3 + R_4} = \bar{\gamma} v_o \]

or

\[\frac{dv_o}{dt} + \left[\frac{1}{RC} + \frac{A}{RC} (\bar{\gamma} - \gamma) \right] v_o = 0 \]

\[\frac{dv_o}{dt} + \frac{A}{RC} (\bar{\gamma} - \gamma) v_o = 0 \]

\[\text{time}^{-1} \]

or

\[\frac{dv_o}{dt} + \frac{v_o}{T} = 0 \quad \text{where} \quad T = \frac{RC}{A(\bar{\gamma} - \gamma)} \]

\[v_o(0) = 0 \]

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Consider a small disturbance to v_o (noise).

if $\bar{\gamma} > \underline{\gamma}$

T is positive

$$v_o = Ke^{\frac{-t}{T}}$$ stable

if $\underline{\gamma} > \bar{\gamma}$

T is negative

$$v_o = Ke^{\frac{t}{|T|}}$$ unstable

if $\underline{\gamma} = \bar{\gamma}$

T is very large

$$v_o = K$$ neutral

Now, let’s build some useful circuits with positive feedback.
One use for instability: Build on the basic op amp as a comparator

\[+V_S \]
\[v^+ \]
\[v^- \]
\[v_o \]
\[-V_S \]

\[v^- \rightarrow 0 \]
\[t \]

\[v^+ - v^- \]

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 21
Now, use positive feedback

\[v^+ = \frac{v_o R_1}{R_1 + R_2} \]

Circuit Diagram:

- Input voltage: \(v_i \)
- Output voltage: \(v_o \)
- Feedback resistors: \(R_1, R_2 \)

Example Conditions:

- \(v^+ = 7.5 \)
- \(v_o = 15 \)
- \(v_i = v^- \) > 7.5
- \(v^- > 7.5 \)
- \(v^- < v^+ \)
- \(v^- < -7.5 \)
- \(v^- = -7.5 \)

Note: The diagram illustrates the positive feedback condition with the operational amplifier's inverting and non-inverting inputs. The feedback loop is closed through the resistors, affecting the output voltage in relation to the input voltage and the feedback resistances.

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Now, use positive feedback

\[v^+ = \frac{v_o R_1}{R_1 + R_2} \]

\[v^- = \frac{-V_s R_1}{R_1 + R_2} \]

\[(v_i = v^-) > v^+ \]

\[v^- > 7.5 \]

\[v^- < -7.5 \]

\[v_o = +V_s \]

\[v_o = -V_s \]

\[v^- = \frac{-V_s R_1}{R_1 + R_2} \]
Why is hysteresis useful?

e.g., analog to digital
Without hysteresis

analog to digital

\[v_i, v_o \]

\[7.5 \]

\[-7.5 \]
Oscillator — can create a clock

Assume \(v_o = V_S \) at \(t = 0 \)
\(v_C = 0 \)
Clocks in Digital Systems

- We built an oscillator using an op amp.

 \[\text{can use as a clock} \]

- Why do we use a clock in a digital system? (See page 735 of A & L)

 \[\text{sender} \rightarrow 1, 1, 0 \rightarrow \text{receiver} \]

 \[\text{clock} \]

 \(\text{a} \) 1,1,0?

 \(\text{b} \) When is the signal valid?

 - common timebase -- when to “look” at a signal
 (e.g. whenever the clock is high)

 \[\rightarrow \text{Discretization of time} \]

 one bit of information associated with
 an interval of time (cycle)