Hypothesis- vs. Data-Driven Research

Jörg Reichardt
reichardt@physik.uni-wuerzburg.de

Institute for Theoretical Physics, University of Würzburg, Germany
joint work with
Michele Leone, ISI Torino, Italy

Zürich, August 20, 2008
Hypothesis Driven

- Needs hypothesis
- Needs appropriate data (interactions+properties)
- Statistical Significance: p-value
- Small effects seen in lots of data

Data Driven

- No Hypothesis needed
- No full data needed (only interactions)
- Post-hoc explanation
- Statistical Significance?!
- Effect size?!

(picture by Mark Newman)
Hypothesis Driven

- Needs hypothesis
- Needs appropriate data (interactions + properties)
- Statistical Significance: p-value
- Small effects seen in lots of data

Data Driven

- No Hypothesis needed
- No full data needed (only interactions)
- Post-hoc explanation
- Statistical Significance?!
- Effect size?!

(picture by Mark Newman)
Market Research as an Example

- $N = 892,641$ eBay users
- $M = 7,4$ Mio links (pairwise competitions for single articles)
- Infer possible hidden classes of agents (interest groups)
- Reorder rows and columns according to classes
Interpretation of Bidder Groups

Risk ratio of bidding in category
A well defined Problem: Planted Partitions

- Ensemble of (infinitely) large Network with given $p(k)$ and $\sum_k^\infty kp(k) = \langle k \rangle$ finite
- Nodes carry hidden cluster index $s_i \in \{1, 2\}$ (type A,B).
- Wiring is random except for within/between group wiring
- One parameter: a fraction of p_{in} links lies within clusters, the rest between clusters (equal sized for simplicity).
- Can we infer the colors given links, sizes and number of clusters, only?
Impossible-to-Trivial-Transition

impossible for $p_{in} = 0.5$

trivial for $p_{in} = 1.0$

$p_{in} = 0.58$

$p_{in} = 0.66$

$p_{in} = 0.75$

$p_{in} = 0.83$

$p_{in} = 0.92$
A Worst Case Scenario: 3 Links per Node

Achievable Accuracy

0.5 0.6 0.7 0.8 0.9 1

Guessing

Inference
Why this transition?

- Given only the network A_{ij}, size and number of clusters
- Only sensible approach: Look for maximally separated clusters!
- Find a minimum cut, i.e. find the ground state (global minimum) of:

\[
\text{Cutsize } E = \sum_{i<j} A_{ij}(1 - \delta(\sigma_i, \sigma_j))
\]

under constraint $\frac{1}{N} \sum_i \delta(\sigma_i, r) = 1/2$ for all $r \in \{1, 2\}$

- Effectively: among all $N!/(N/2)!/(N/2)!$ partitions into two equal sized clusters (“configurations”), find the one with minimum number of edges between clusters (Bayes MAP optimal)

- Note: Cutsize of planted cluster structure: $E^p = N \frac{\langle k \rangle}{2} (1 - p_{in})$
Algorithm Independent Results

- **Problem:** Designed configuration is a guaranteed local minimum of the cutsize only (!) for $p_{in} = 1$.

- **Study the overlap of the expected configuration which minimizes E with planted clusters as function of p_{in}.**

- Makes analysis independent of inference algorithm used and results universal.

- Statistical Physics allows to calculate $p(\sigma_i|s_i)$ as a function of p_{in}

- Find the expected accuracy of recovering the hidden variables via

$$\text{Accuracy} = \frac{1}{N} \sum_{i=1}^{N} \delta(\sigma_i, s_i) = \sum_s p(\sigma = s|s)$$

where the σ_i minimize the cutsize E and s_i are the hidden variables.
Influence of Graph Topology on Min-Cut Partition

- Can find small cutsizes even in random networks
- Alternative minima compete with designed minima

Influence of Graph Topology on Min-Cut Partition

- Can find small cutsizes even in random networks
- Alternative minima compete with designed minima

Influence of Graph Topology on Min-Cut Partition

- Can find small cutsizes even in random networks
- Alternative minima compete with designed minima

Influence of Graph Topology on Min-Cut Partition

- Can find small cutsizes even in random networks
- Alternative minima compete with designed minima

Influence of Graph Topology on Min-Cut Partition

- At $p_{in} \geq p_{in}^c$ we find a configuration that has a lower energy than expected in a random network.
- This global minimum moves closer to the designed configuration.

Influence of Graph Topology on Min-Cut Partition

- At $p_{in} = 2E^{Rnd}/\langle k \rangle$ the designed minimum is lower than the expectation value in a random network
- Less local minima

Influence of Graph Topology on Min-Cut Partition

- Global minimum approaches designed configuration with increasing p_{in}
- Less local minima, landscape smooths

Influence of Graph Topology on Min-Cut Partition

- Global minimum approaches designed configuration with increasing p_{in}
- Less local minima, landscape smoothes

Influence of Graph Topology on Min-Cut Partition

- At $p_{in} = 1$ designed minimum and global minimum coincide
- Only one minimum left

How does p_{in}^c depend on Degree Distribution?

- ER: Poissonian, SF k_{min}: $p(k) \propto k^{-3}$ for $k \geq k_{min}$, SF Δk: $p(k) \propto (k + \Delta k)^{-3}$

- Naïve guess for critical p_{in} would be $p_{in}^c = 2E^{Rnd}/\langle k \rangle$ and is too conservative.

- Recognizable structure starts at “weaker” cluster structures.
Inclusion of Prior Knowledge

Again, only 3 links per node, finite fraction of hidden labels known:

- Partially labeled data may increase accuracy dramatically
- Especially around the transition point.
4 equal sized groups, Poissonian $p(k)$ with $\langle k \rangle = 16$
Unequal Cluster Sizes

Bethe lattice with 3 links per node, 2/3 type A, 1/3 type B

- Behavior is qualitatively the same as for equal sized clusters
- Transition point changes slightly (p_{in}^c moves left)
Conclusion

• Sharp transition from impossible to easy cluster detection

• Similar transitions for multivariate data:

 • Given $N = \alpha D$ data points in a space of dimension D, can we infer clusters (Gaussian Mixtures, etc)?

 • Answer: Yes we can, if only $\alpha > \alpha_c$! (Given enough data, we can learn any distribution)

 • This is wrong for sparse graphs (those with finite connectivity)!

 • "Dimensionality and size of data set are not independent".

 • There may exist structure that is principally undetectable by unsupervised methods even in infinitely large networks.

 • Spurious solutions in large "hypothesis space" obscure true structure.

 • Inclusion of prior knowledge (labeled nodes) may help somewhat.

 • Analytical formulae for transition point and achievable accuracy.

Data driven research will (only) tell you about (all) strong effects! Small effects are visible only to hypothesis driven research!
Conclusion

- Sharp transition from impossible to easy cluster detection
- Similar transitions for multivariate data:
 - Given $N = \alpha D$ data points in a space of dimension D, can we infer clusters (Gaussian Mixtures, etc)?
 - Answer: Yes we can, if only $\alpha > \alpha_c$! (Given enough data, we can learn any distribution)
Conclusion

- Sharp transition from impossible to easy cluster detection
- Similar transitions for multivariate data:
 - Given \(N = \alpha D \) data points in a space of dimension \(D \), can we infer clusters (Gaussian Mixtures, etc)?
 - Answer: Yes we can, if only \(\alpha > \alpha_c \)! (Given enough data, we can learn any distribution)
- This is wrong for sparse graphs (those with finite connectivity)!
Conclusion

- Sharp transition from impossible to easy cluster detection
- Similar transitions for multivariate data:
 - Given $N = \alpha D$ data points in a space of dimension D, can we infer clusters (Gaussian Mixtures, etc)?
 - Answer: Yes we can, if only $\alpha > \alpha_c$! (Given enough data, we can learn any distribution)
- This is wrong for sparse graphs (those with finite connectivity)!
- ”Dimensionality and size of data set are not independent”.
Conclusion

• Sharp transition from impossible to easy cluster detection
• Similar transitions for multivariate data:
 • Given $N = \alpha D$ data points in a space of dimension D, can we infer clusters (Gaussian Mixtures, etc)?
 • Answer: Yes we can, if only $\alpha > \alpha_c$! (Given enough data, we can learn any distribution)
• This is wrong for sparse graphs (those with finite connectivity)!
• "Dimensionality and size of data set are not independent".
• There may exist structure that is principally undetectable by unsupervised methods even in infinitely large networks.
Conclusion

• Sharp transition from impossible to easy cluster detection
• Similar transitions for multivariate data:
 • Given $N = \alpha D$ data points in a space of dimension D, can we infer clusters (Gaussian Mixtures, etc)?
 • Answer: Yes we can, if only $\alpha > \alpha_c$! (Given enough data, we can learn any distribution)
• This is wrong for sparse graphs (those with finite connectivity)!
• ”Dimensionality and size of data set are not independent”.
• There may exist structure that is principally undetectable by unsupervised methods even in infinitely large networks.
• Spurious solutions in large “hypothesis space” obscure true structure.
Conclusion

- Sharp transition from impossible to easy cluster detection
- Similar transitions for multivariate data:
 - Given $N = \alpha D$ data points in a space of dimension D, can we infer clusters (Gaussian Mixtures, etc)?
 - Answer: Yes we can, if only $\alpha > \alpha_c$! (Given enough data, we can learn any distribution)
- This is wrong for sparse graphs (those with finite connectivity)!
- "Dimensionality and size of data set are not independent".
- There may exist structure that is principally undetectable by unsupervised methods even in infinitely large networks.
- Spurious solutions in large “hypothesis space” obscure true structure.
- Inclusion of prior knowledge (labeled nodes) may help somewhat.
Conclusion

• Sharp transition from impossible to easy cluster detection
• Similar transitions for multivariate data:
 • Given $N = \alpha D$ data points in a space of dimension D, can we infer clusters (Gaussian Mixtures, etc)?
 • Answer: Yes we can, if only $\alpha > \alpha_c$! (Given enough data, we can learn any distribution)
• This is wrong for sparse graphs (those with finite connectivity)!
• "Dimensionality and size of data set are not independent".
• There may exist structure that is principally undetectable by unsupervised methods even in infinitely large networks.
• Spurious solutions in large “hypothesis space” obscure true structure.
• Inclusion of prior knowledge (labeled nodes) may help somewhat.
• Analytical formulae for transition point and achievable accuracy.
Conclusion

• Sharp transition from impossible to easy cluster detection
• Similar transitions for multivariate data:
 • Given $N = \alpha D$ data points in a space of dimension D, can we infer clusters (Gaussian Mixtures, etc)?
 • Answer: Yes we can, if only $\alpha > \alpha_c$! (Given enough data, we can learn any distribution)
• This is wrong for sparse graphs (those with finite connectivity)!
• ”Dimensionality and size of data set are not independent”.
• There may exist structure that is principally undetectable by unsupervised methods even in infinitely large networks.
• Spurious solutions in large “hypothesis space” obscure true structure.
• Inclusion of prior knowledge (labeled nodes) may help somewhat.
• Analytical formulae for transition point and achievable accuracy.

Data driven research will (only) tell you about (all) strong effects! Small effects are visible only to hypothesis driven research!
References

Solution via Cavity-Equations

\[P(h|s) = \sum_{k=0}^{\infty} p(k) \int \prod_{i=1}^{k} (d^q u_i Q_{in}(u_i|s)) \delta \left(h - \sum_{i=1}^{k} u_i \right) \]

\[Q(u|s) = \sum_{d=0}^{\infty} q(d) \int \prod_{i=1}^{d} (d^q u_i Q_{in}(u_i|s)) \delta \left(u - \hat{u} \left(\sum_{i=1}^{d} u_i \right) \right) \]

\[Q_{in}(u|s) = p_{in} Q(u|s) + \sum_{r \neq s}^{q} \frac{1 - p_{in}}{q - 1} Q(u|r). \]

\[Q(u|s) = \eta_{cw}, \text{ where } c = u^s \text{ and } w = ||u||^2 - c \]

Symmetry considerations enforce equi-partition and reduce the number of independent parameters from \(q(2^q - 1) \) to only \(2q - 1 \)!
Iterated Solution of Cavity-Equations for 2 Clusters

\[\eta_{11} = \sum_{n0=0}^{\infty} \sum_{n=0}^{\infty} q(n_0 + 2n) \frac{(n_0 + 2n)!}{n_0! n! n!} (\eta_{10}^{in})^n (\eta_{01}^{in})^n \eta_{11}^{n_0} \]

\[\eta_{10} = \sum_{n0=0}^{\infty} \sum_{n_1 > n_2}^{\infty} q(n_0 + n_1 + n_2) \frac{(n_0 + n_1 + n_2)!}{n_0! n_1! n_2!} (\eta_{10}^{in})^{n_1} (\eta_{01}^{in})^{n_2} \eta_{11}^{n_0} \]

\[\eta_{01} = 1 - \eta_{11} - \eta_{10} \]