Large Scale Support Vector Machines

Olivier Chapelle & S. Sathiya Keerthi

Jul 09, 2008
ICML workshop on large scale learning
Goal = find a good function. Minimizing an objective function is only a *means* to this end.

See: Bottou and Bousquet 2008, *The Tradeoffs of Large Scale Learning*, NIPS 2008:

- Objective function value and training error can be interesting quantities for debugging, but ultimately only the test error matters.
- There is nothing "holy" in the minimum of the objective function.

→ From our perspective, the wild track was much more interesting than the SVM track.
The **number of examples** has to be optimized.

- No need to consider a million examples to solve a 3D linear problem!
- For the competition, 100k examples are more than enough to estimate a reasonable linear decision boundary.

The **stopping criterion** has to be optimized.

- Very loose stopping criterion is usually good enough.
- Example: on the Forest dataset, changing the stopping criterion of LIBSVM from $\varepsilon = 10^{-3}$ to $\varepsilon = 1$ reduces the training time by a factor 10 without loss of accuracy!
- When comparing your new learning algorithm to existing ones, you *need* to optimize the stopping criteria.
The number of examples has to be optimized.

- No need to consider a million examples to solve a 3D linear problem!
- For the competition, 100k examples are more than enough to estimate a reasonable linear decision boundary.

The stopping criterion has to be optimized.

- Very loose stopping criterion is usually good enough.
- Example: on the Forest dataset, changing the stopping criterion of LIBSVM from $\varepsilon = 10^{-3}$ to $\varepsilon = 1$ reduces the training time by a factor 10 without loss of accuracy!
- When comparing your new learning algorithm to existing ones, you need to optimize the stopping criteria.
Claim

Large scale learning algorithms should be compared on a test error vs training time plot.

Plot obtained by varying stopping criterion, number of examples, dimensionality, regularization parameter,...
Then take the lower envelope.
Example: MNIST

Each curve corresponds to a different training set size and is drawn for various number of iterations in a non-linear conjugate gradient minimization.
Example: MNIST

Each curve corresponds to a different training set size and is drawn for various number of iterations in a non-linear conjugate gradient minimization.
Use *differentiable* objective functions

- Numerically: usually easier to optimize.
- Statistically: no particular reason to prefer hinge loss to squared hinge loss.
SVM optimization in the primal

See article and Matlab code at: http://olivier.chapelle.cc/primal/

Nonlinear conjugate gradient

- Only need to compute the gradient:

\[
\nabla p = w_p - C \sum_{i=1}^{n} x_{ip} \max(0, 1 - y_i (w \cdot x_i)).
\]

Complexity of \(O(nd)\) per iteration.

- Line search: function evaluation is dominated by the computation of \(Xw\).

\[
X(w + ts) = Xw + t Xs.
\]

\(\longrightarrow\) After precomputing \(Xw\) and \(Xs\), the evaluation of the function along \(s\) is \(O(n)\).

In practice, line search done with 1D Newton steps.
Truncated Newton

- Newton step:
 \[w \leftarrow w - H^{-1} \nabla \]

 \[H_{pq} = \delta_{pq} + C \sum_{i=1}^{n} x_{ip} x_{iq} 1_{y_i(w \cdot x_i) \leq 1}. \]

- As before, one can do line search.

- Complexity per iteration:
 - \(O(nd) \) to find the \(n_{sv} \) support vectors.
 - \(O(n_{sv}d^2) \) to compute the Hessian
 - \(O(d^3) \) to invert the Hessian.
 - Only couple of iterations are required.

- Not feasible for large \(d \).
Instead solve the linear system by *linear conjugate gradient*:

\[
\begin{align*}
\text{repeat} & \quad \text{▷ Newton Loop} \\
sv & \leftarrow \{i, \ y_i(w \cdot x_i) < 1\}. \ X_{sv} := \text{submatrix of } X. \\
\text{repeat} & \quad \text{▷ Solve by CG } (I + CX_{sv}^\top X_{sv})^{-1} \nabla. \\
v & \leftarrow s + CX_{sv}^\top (X_{sv}s) \\
& \quad \text{Update } s \text{ based on } v. \\
\text{until} & \ \text{Convergence} \\
w & \leftarrow w + ts \ (t \text{ found by line search}). \\
\text{until} & \ \text{Convergence}
\end{align*}
\]

- Each iteration is a matrix vector multiplication: \(O(n_{sv}d) \) per iteration; and much less when the training data is sparse.
- Similar to nonlinear conjugate gradient but can be faster when \(n_{sv} \ll n \).
For the competition, we simply did one Newton step.

Since the number of dimensions was rather small, we could compute and invert the Hessian explicitly (no linear conjugate gradient).

Since we did only one step, the line search was not needed (but we still did it).

Matlab code available at: http://olivier.chapelle.cc/primal/

But one Newton steps is very easy to code: one Matlab line! (this is just linear regression)
One Newton step takes $O(nd^2)$ operations for the Hessian computation.

In contrast, we tried to take k steps of non-linear conjugate gradient with $k < d$. Time complexity is $O(knd)$. But this was slower than Newton! $[n = 10^5, k = 100, d = 500]$.

The reason is probably that matrix-matrix multiplications are relatively faster than matrix-vector multiplications due to a better cache optimization.

More generally, this suggests that mini-batch algorithms should be faster than online / sequential methods.

Similar observation was made by Yoshua Bengio last year at a Nips workshop: *Speeding Up Stochastic Gradient Descent*, http://videolectures.net/eml07_bengio_ssg/
Based on *Hsieh et al, ICML 2008*. Method is very close to “−s 3” of LIBLINEAR.

L1=hinge loss; L2=squared hinge loss

Basic iteration: Select a subset of examples, order them randomly and update the dual variable of one example at a time.

Two types of iterations: *Full* and *Shrunk*

- **Full:** all examples are chosen for update.
- **Shrunk:** only examples whose dual variable is away from boundary (0 and C in L1 and only 0 in L2) are chosen for update.
Stopped when one of the following occurs:

1. dual optimality violation is within 0.1.
2. total number of effective epochs is at most 20.

Post-competition realization: Stopping based on stationarity of aoPRC on a subset of training examples would have yielded better results.

When training with dataset size n, C is taken to be a function of n as: $C = \tilde{C} \sqrt{N/n}$, where N is the size of full training set.

For each dataset the value of \tilde{C} was tuned using 100,000 training examples and optimizing aoPRC on the remaining labeled examples.
Two final thoughts

The main bottleneck in training linear classifiers is reading the data: more than 90% of the time during the competition was spent reading the data!

Future challenge:

1. Consider datasets which do not fit in memory.
2. Include reading time in the evaluation.

→ Need for algorithms which try to minimize the number of passes on the data.
A robust method should be fully automated.
\[\rightarrow\] Time needed for \textit{model selection} should also be included in the evaluation.

The code submitted by a competitor should be oblivious to the datasets it is tested on.