Influence and Correlation in Social Networks

Mohammad Mahdian
Yahoo! Research

Joint work with Aris Anagnostopoulos and Ravi Kumar
to appear in KDD’08.
Social systems

- **Social network:** graph that represents relationships between independent agents.

- Social networks are everywhere and are shaping our lives:
 - Network of professional contacts (e.g., for finding jobs)
 - Network of colleagues (e.g., for learning new techniques)
 - Web 2.0 systems:
 - Online social networks: facebook, myspace, orkut, IM, linkedIn, twitter, …
 - Content sharing: flickr, del.icio.us, youtube, weblogs, …
 - Content creation: wikipedia, …
The Online Revolution:
- People switch more and more of their interactions from offline to online
- Pushing the # of contacts we can keep track of
- Redefining privacy

Ideal for experiments in social sciences:
- Ability to measure and record all activities
- Massive data sets
Social correlation

- Role of social ties in shaping the behavior of users

- Examples:
 - Joining LiveJournal communities [Backstrom et al.]
 - Publishing in conferences [Backstrom et al.]
 - Tagging vocabulary on flickr [Marlow et al.]
 - Adoption of paid VOIP service in IM
 - ...
Joining communities [Backstrom et al]
Publishing in conferences
Flickr tag vocabulary [Marlow et al.]
Sources of correlation

- **Social influence**: One person performing an action can cause her contacts to do the same.
 - by providing information
 - by increasing the value of the action to them

- **Homophily**: Similar individuals are more likely to become friends.
 - Example: two mathematicians are more likely to become friends.

- **Confounding factors**: External influence from elements in the environment.
 - Example: friends are more likely to live in the same area, thus attend and take pictures of similar events, and tag them with similar tags.
Social influence

- Focus on a particular “action” A.
 - E.g.: buying a product, joining a community, publishing in a conference, using a particular tag, using the VOIP service, …

- An agent who performs A is called “active”.

- x has influence over y if x performing A causes/increases the likelihood that y performs A.

- Distinguishing factor: causality relationship
Identifying social influence

- **Why is it important?**

- **Analysis:** predicting the dynamics of the system. Whether a new norm of behavior, technology, or idea can diffuse like an epidemic.

- **Design:** for designing a system to induce a particular behavior, e.g.:
 - vaccination strategies (random, targeting a demographic group, random acquaintances, etc.)
 - viral marketing campaigns
Example: obesity study

- Data set of 12,067 people from 1971 to 2003 as part of Framingham Heart Study
Obesity study

- Data set of 12,067 people from 1971 to 2003 as part of Framingham Heart Study

- Results
 - Having an obese friend increases chance of obesity by 57%.
 - Obese sibling → 40%, obese spouse → 37%

- Methodology
 - Logistic regression, taking many attributes into account (e.g., age, sex, education level, smoking cessation)
 - Taking advantage of data that is available over time
 - “edge reversal test”
Obesity study

![Graph showing the increase in risk of obesity in ego based on different alter types.](#)
Models of social influence

- Many models proposed in different settings
 - Game-theoretic models
 - Each agent modeled as a player in a “game”.
 - The utility that an agent derives depends on what his/her friends do.
 - Probabilistic models
 - Independent cascade model [Kempe et al.]
 - Every neighbor \(u \) of \(v \) who becomes active gets an independent chance to influence \(v \) with probability \(p_{uv} \).
 - Linear threshold model [Kempe et al.]
 - Each node has a random threshold, becomes active if sum of weights of active friends exceeds threshold.
 - Probabilistic models

- [Morris’00], [Immorlica et al.’07]
- Ising-type models from physics
Models of social influence

- Probabilistic models are more predictive
 - allows optimization (find the best “seed set”)
 - allows fitting the data to estimate parameters of the system

- Our model also includes the element of time
 - Graph G; Time period $[0,T]$
 - At any time period a number of agents can become active
 - Let W be the set of active nodes at the end.
Model

- **Influence model**: each agent becomes active in each time step independently with probability $p(a)$, where a is the # of active friends.

- **Natural choice for $p(a)$**: logistic regression function:

$$\ln \left(\frac{p(a)}{1 - p(a)} \right) = \alpha \ln(a + 1) + \beta$$

with $\ln(a+1)$ as the explanatory variable. I.e.,

$$p(a) = \frac{e^{\alpha \ln(a+1)+\beta}}{1 + e^{\alpha \ln(a+1)+\beta}}$$

- **Coefficient α** measures social correlation.
Measuring social correlation

- We compute the maximum likelihood estimate for parameters α and β.
- Let $Y_a = \#$ pairs (user u, time t) where u is not active and has a active friends at the beginning of time step t, and becomes active in this step.
- Let $N_a = \ldots$ does not become active in this step.
- Find α, β to maximize

$$\prod_a p(a)^{Y_a} (1 - p(a))^{N_a}$$

- For convenience, we cap a at a value R.
The max likelihood problem

- **Lemma.** There is a unique solution (α, β) that maximizes the likelihood function.

- **Proof idea.** Assume (α, β) and (α', β') both maximize this function. We give a path between these two points such that the likelihood function is concave along this path.

- Same proof can be used to show that estimated (α, β) is a continuous function of Y_a’s and N_a’s.
Flickr data set

- Photo sharing website
- 16 month period
- Growing # of users, final number ~800K
- ~340K users who have used the tagging feature

Social network:
- Users can specify “contacts”.
- 2.8M directed edges, 28.5% of edges not mutual.
- Size of giant component ~160K
piazza san marco

This photo has notes. Move your mouse over the photo to see them.

Comments

mac on a mac pro says:
Wonderful!
Posted 7 months ago. (permalink)

-- Reza -- pro says:
A nice action shot!
Posted 7 months ago. (permalink)

Tags
venice
venezia
italy
italia
st.mark square
piazza san marco
birds
girl
About mmahdian / Mohammad Mah. pro

I'm **Male** and **Single**.

http://www.mahdian.info
Santa Clara, USA

Testimonials

mmahdian doesn't have any testimonials yet.

mmahdian's contacts (75)

- Hossein Ghodsii
- alishokri 1982
- nargesam
- elishka
- zobery
- ~~Shiva~~ I'm off on vacation!
- Tobi Bell
- Jasiii
- baraneh
- nelia jafroodi

mmahdian's public groups

- Pumpkin
- Snow
- FLOWERS
- Birds
- Black and White
- I Saw the Sign
- Canada Landscapes
- Crater Lake
- I Love NY
- Mount Rainier
Flickr data set, growth
Flickr graph, indegrees & outdegrees
Flickr tags

- ~10K tags
- We focus on a set of 1700
- Different growth patterns:
 - bursty (“halloween” or “katrina”)
 - smooth (“landscape” or “bw”)
 - periodic (“moon”)
- For each tag, define an action corresponding to using the tag for the first time.
Social correlation in flickr

- Distribution of α values estimated using maximum likelihood:

![Histogram and empirical cumulative distribution plots showing the distribution of α values.](image)
Distinguishing influence

- Recall: graph G, set W of active nodes
- Non-influence models
 - Homophily: first W is picked, then G is picked from a distribution that depends on W
 - Confounding factors: both G and W are picked from distributions that depend on another var X.
- Generally, we consider this correlation model:
 - (G,W) are selected from a joint distribution
 - Each agent in W picks an activation time i.i.d. from a distribution on $[0,T]$.
Testing for influence

- Simple idea: even though an agent’s probability of activation can depend on friends, her timing of activation is independent.

- **Shuffle Test:** re-shuffle the time-stamp of all actions, and re-estimate the coefficient α. If different from original α, social influence can’t be ruled out.

- **Edge-Reversal Test:** reverse the direction of all edges, and re-estimate α.
Shuffle Test, Theoretical Justification

- **Theorem.** If the graph is large enough, time-shuffle test rules out the general model of correlation.

- **Intuition:** in correlation model, the distribution of the data remains the same if time-stamps are shuffled.

- **Challenge:** prove concentration.

- **Proof sketch:**
 - First use Azuma’s martingale inequality to show that Y_a’s and N_a’s are concentrated.
 - Then show that the maximum likelihood estimate for α is a continuous function of Y_a’s and N_a’s.
Simulations

- Run the tests on randomly generated action data on flickr network.

- **Baseline:** no-correlation model, actions generated randomly to follow the pattern of one of the real tags, but ignoring network

- **Influence model:** same as described, with a variety of \((\alpha, \beta)\) values

- **Correlation model:** pick a # of random centers, let \(W\) be the union of balls of radius 2 around these centers.
Simulation results, baseline
Shuffle test, influence model
Shuffle test, correlation model
Edge-reversal test, influence model
Edge-reversal test, correlation model
Shuffle test on Flickr data
Edge-reversal test on Flickr data
Conclusions

- **Our contributions**
 - Defined two models that exhibit correlation, one with and the other without social influence.
 - Developed statistical tests to distinguish the two
 - Theoretical justification for one of the tests.
 - Simulations suggest that the tests “work” in practice.
 - On Flickr, we conclude that despite considerable correlation, no social influence can be detected.

- **Discussion**
 - cannot conclusively say there is influence without controlled experiments (example: flu shot)
 - still can rule out potential candidates
 - **Open**: develop algorithms to find “influential” nodes/communities given a pattern of spread.