Infinite mixtures for multi-relational categorical data

Janne Sinkkonen1,2, Janne Aukia2, Samuel Kaski1

1Helsinki University of Technology
2Xtract Ltd
A simple generative model for enriched graph data

Janne Sinkkonen1,2, Janne Aukia2, Samuel Kaski1

1Helsinki University of Technology
2Xtract Ltd
Background

- MLG’07: Probabilistic community finding
 - Community: tightly connected subgraph
 - Applied to a large social network (10^6 nodes) of Last.fm
 - For nondirected graphs
The graph model is restrictive

In real world pure graphs are often a poor data model

Motivation:
1. Include richer data
2. Still have global components

Type 1 relation

Type 2 relation
Probabilistic framework

Components generate edges, according to some known process (model) and unknown or latent parameters.

Ununknowns are inferred from the observed graph by Bayesian techniques (Gibbs sampling).

Parameters tell community memberships.
A richer graph

- Scientific papers
 - Citations modeled as a graph
 - Content modeled as a word histogram
Generative process

- Again, a series of latent components generate data
- Each component has multinomials over parameters over nodes and words
- Edges are node-node co-occurrences
- Document content are node-word co-occurrences
Generative process II

\begin{align*}
\beta^1 \rightarrow \psi^1_z & \quad K(T^1) \\
\beta^2 \rightarrow \psi^2_z & \quad K(T^2)
\end{align*}

Marginalized away for estimation

\(d^1 \rightarrow \psi_z \rightarrow z \rightarrow d^2 \)

Marginalized

\(\alpha \rightarrow \theta \)

Estimated (sampled)
Estimation

- Estimation by collapsed Gibbs sampling
- Iterate over objects (citations, words)
 - Draw latent component for the object, given data and components of all other objects
 - Component assignments eventually converge to the true posterior distribution

\[
p(z, D_i | \ldots) \propto \frac{n_z, \alpha}{N + \alpha} \times \begin{cases} g_{z, l_1}^{(1)} g_{z, l_2}^{(1)} / (g_{z, \cdot}^{(1)} (g_{z, \cdot}^{(1)} + 1)) & \text{for } D_i \in C_1 \\ g_{z, l_1}^{(1)} g_{z, l_2}^{(2)} / (g_{z, \cdot}^{(1)} (g_{z, \cdot}^{(2)})) & \text{for } D_i \in C_2 \end{cases}
\]

- Collect samples of \(z \), summarize somehow.
Component priors

• Dirichlet prior for a fixed number of components.
 – Requires component number and a hyperparameter.

• Dirichlet process prior.
 – Only a hyperparameter, no fixed number of components.
 – “Infinite mixture”
 • But only part of the components generate any observations.

• Both are equally easy to sample.

\[p(z|\alpha, N) = \frac{n_z + \alpha}{N + K\alpha} \quad p(z|\alpha) = \frac{\{n_z, \alpha\}}{N + \alpha} \]
Demo on Cora and Citeseer

Perplexity for Cora

Perplexity for Citeseer
Formalization as relations

(T1, T1)

(T1, T2)

John Mary Alex
John Mary Alex

Mary Alex
Mary Peter

Beatles: White Album

Type 1 relation

John Beatles: White Album Alex

Type 2 relation

John Alex
General case: examples

Objects: co-occurrences of atomic events

Ordinary edge

Cross-category co-occurrence

Clique (triplet)

Colored edge

Parameters of atomic event types (multinomial), given a component z

(Other components have the same parameters)
General case

• Data: heterogeneous objects
 – Example: musical taste and communication
 • (John, ambient) of type (T1, T2)
 (John, Paul, SMS/call) of type (T1, T1, T3)
 • That is, tuples of atomic events, object types known

1. \(\theta \sim \text{DP}(\alpha); \psi_{z}^{(t)} \sim \text{Dir}(\beta^{(t)}), t = 1, \ldots, n(T); \)
2. For each \(i \in 1, \ldots, N \):
 - \(z_{i} \sim (\theta); \)
 - \(d_{i}^{(j)} \sim (\psi_{z_{i}}^{(t_{ij})}), j = 1, \ldots, h_{k}(C_{(i)}); \)
General case: estimation

• Sample latent components by

\[
p(z, D_i) \propto p(z|\alpha) \prod_t \frac{\prod_{l=1}^{L_t} \prod_{n=1}^{\#\{u \in D_i | u = (t,l)\}} (g_{tzl} + 1 - n)}{\prod_{m=1}^{\#\{u \in D_i | u = (t,-)\}} (g_{tz} + 1 - m)}
\]

– Gamma functions of counters are “rolled back”
– In practice often simple

• Compare to the document content-citation model

\[
p(z, D_i|\ldots) \propto \frac{\{n_z, \alpha\}}{N + \alpha} \times \begin{cases} g_{z,l_1}^{(1)} \frac{g_{z,l_2}^{(1)}}{(g_{z}^{(1)}(g_{z}^{(1)} + 1))} & \text{for } D_i \in C_1 \\ g_{z,l_1}^{(1)} \frac{g_{z,l_2}^{(2)}}{(g_{z}^{(1)}(g_{z}^{(2)}))} & \text{for } D_i \in C_2 \end{cases}
\]
Implementation

- \(g \): counts (atomic event type, comp., value)
 - Constantly updated in sampling
 - Mostly zeroes, at least for large collections
 - E.g., a hash table or a set of hash tables
- \(n_z \): number of objects from a component
 - Constantly updated in sampling
 - With the DP prior, components come and go
 - Self-balancing binary tree

\[
p(z, D_i | \ldots) \propto \frac{\{n_z, \alpha\}}{N + \alpha} \times \begin{cases} g_{z,l_1}^{(1)} g_{z,l_2}^{(1)} / (g_{z,.}^{(1)} (g_{z,.}^{(1)} + 1)) & \text{for } D_i \in C_1 \\ g_{z,l_1}^{(1)} g_{z,l_2}^{(2)} / (g_{z,.}^{(1)} (g_{z,.}^{(2)})) & \text{for } D_i \in C_2 \end{cases}
\]
Conclusion

• Related works: Volker Tresp’s tutorial from Pascal Symposium Meeting 2008
 • IHRM (Xu et al), IRM (Kemp et al)
 HRM (Nowicki et al), stochastic block models (Airoldi et al)
• A simple relational model with wide applicability
 – Global components
 • An application: community finding, enriched graphs
 – Poisson distribution for links and other co-occurrences
 • As opposed to Bernoulli
 • Estimation does not deal explicitly with event types not in the data \(\rightarrow\) sparse, fast
• To do: comparisons, estimation, latent structures