Detecting Changes in Musical Texture

MML 2008
International Workshop on Machine Learning and Music
9 July 2008, Helsinki

Atte Tenkanen, University of Turku, Finland
Fernando Gualda, Queen's University of Belfast, UK
Aims

• To detect articulative boundaries in a composition by taking the changes in several musical features into account.
Aims

• To detect articulative boundaries in a composition by taking the changes in several musical features into account.

• To offer an extension to a music analytical method called *Comparison Set Analysis* (CSA) (Huovinen & Tenkanen 2007).
Comparison Set Analysis

• Main parts of the *comparison set analysis*:

 1) overlapping segmentation, 2) comparison function, 3) comparison set and 4) result graph.
Comparison Set Analysis

• CSA is a method with which, for example, formal articulations of a composition can be perceived.
Comparison Set Analysis

• CSA is a method with which, for example, formal articulations of a composition can be perceived.
• Feature extraction: In CSA musical units like pitch classes (derived from pitches) in a composition are segmented into overlapping sets of the same cardinality.
Comparison Set Analysis

• CSA is a method with which, for example, formal articulations of a composition can be perceived.

• Feature extraction: In CSA musical units like pitch classes (derived from pitches) in a composition are segmented into overlapping sets of the same cardinality.

• These segments are then compared with a selected comparison set, constructed from similar units.
Comparison Set Analysis

• The comparison set embodies a chosen musical property whose **prevalence** is evaluated through a composition.
Comparison Set Analysis

• The comparison set embodies a chosen musical property whose **prevalence** is evaluated through a composition.

• The results can be presented in different types of graphs, for example, trend curves which represent changes in harmonic features or mean points for classification of musical pieces.
Comparison Set Analysis

• We are working with symbolic data and especially with MIDI.
Comparison Set Analysis

• We are working with symbolic data and especially with MIDI.

• The method is based on the 'well prepared' event list.
Comparison Set Analysis

• We are working with symbolic data and especially with MIDI.

• The method is based on the 'well prepared' event list.

• For example, in the case of pitch-class set segmentation, we associate the most proximate pitch-class set of the chosen cardinality to each note in the score.
Comparison Set Analysis

![Flowchart Diagram]

1. Score
2. Event list
3. Segmentation
4. Classification of segments
5. Frequency analysis
6. Comparison set
7. Calculation with similarity function
8. Graphs etc.
Example graphs

- Proportions of the ’Mystic chord’ (SC 6-34A) segments in some of Scriabin’s piano pieces.
 (Tenkanen, MCM2007)
Example graphs

• An example of CSA. Olli Linjama, *Improvisation nr. 756* (2004):
Boundary detection

- There is no connection between the mechanical overlapping segmentation and the real 'musical' segmentation.

- We can, however, use CSA to detect boundaries in musical texture.
Boundary detection

- In the present study we utilize several musical features.
Boundary detection

• In the present study we utilize several musical features.

• But, instead of selecting a comparison set for each measurable feature separately...
Boundary detection

• In the present study we utilize several musical features.

• But, instead of selecting a comparison set for each measurable feature separately...

• an analyst chooses by hand some notes which are associated with the interesting musical characters, here, changes in musical texture. For that purpose...
Boundary detection

• In the present study we utilize several musical features.

• But, instead of selecting a comparison set for each measurable feature separately...

• an analyst chooses by hand some notes which are associated with the interesting musical characters, here, changes in musical texture. For that purpose...

• two consecutive time windows of equal size are moved over the musical piece:
Boundary detection

Sibelius, Symphony Nr. 5, 3rd movement. Bars 102-112.
Boundary detection

• Averaged distances between these windows –regarding to six features– are calculated.
Boundary detection

• Averaged distances between these windows –regarding to six features– are calculated.

• The distances are then stored as six-dimensional feature vectors associated to each 'borderline' note in the piece.
Boundary detection

• Averaged distances between these windows –regarding to six features– are calculated.

• The distances are then stored as six-dimensional feature vectors associated to each 'borderline' note in the piece.

• All the distance values are normalized to zero mean and unit variance for each feature separately.
Boundary detection

- The 'comparison set' consists of selected multidimensional feature vectors inputted as class members to a fuzzy k-nn classifier (Keller et al. 1985).
Boundary detection

- The 'comparison set' consists of selected multidimensional feature vectors inputted as class members to a fuzzy k-nn classifier (Keller et al. 1985).

\[U(x, c_i) = \frac{\sum_{k=1}^{K} U(x_k, c_i) \cdot d(x, x_k)^{-2/(m-1)}}{\sum_{k=1}^{K} d(x, x_k)^{-2/(m-1)}} \]
Boundary detection

• The 'comparison set' consists of selected multidimensional feature vectors inputted as class members to a fuzzy k-nn classifier (Keller et al. 1985).

• A comment by a reviewer: "There's not much ML in this paper".
Boundary detection

• The 'comparison set' consists of selected multidimensional feature vectors inputted as class members to a fuzzy k-nn classifier (Keller et al. 1985).

• A comment by a reviewer: "There's not much ML in this paper".
 - Agree.
Boundary detection

- The 'comparison set' consists of selected multidimensional feature vectors inputted as class members to a fuzzy k-nn classifier (Keller et al. 1985).
- A comment by a reviewer: "There's not much ML in this paper".
 - Agree.
- The classifier frees an analyst from defining the exact attributes for the group of comparison sets.
Boundary detection

• The 'comparison set' consists of selected multidimensional feature vectors inputted as class members to a fuzzy k-nn classifier (Keller et al. 1985).

• A comment by a reviewer: ”There's not much ML in this paper”.
 - Agree.

• The classifier frees an analyst from defining the exact attributes for the group of comparison sets.

• It's only one way to define the comparison set based on highly different features.
Vector types, relation functions and segmentation cardinalities

<table>
<thead>
<tr>
<th>Feature vectors</th>
<th>Cardinality</th>
<th>Distance/Similarity Relation measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>set-classes</td>
<td>4</td>
<td>REL</td>
</tr>
<tr>
<td>pitch-class sets</td>
<td>same segmentation</td>
<td>cofre1</td>
</tr>
<tr>
<td>rhythm sets</td>
<td>4</td>
<td>cosine distance</td>
</tr>
<tr>
<td>melodic transition vectors</td>
<td>4</td>
<td>euclidean dist. between transition probability matrices</td>
</tr>
<tr>
<td>note duration distributions</td>
<td>-</td>
<td>euclidean dist. between normalized distributions</td>
</tr>
<tr>
<td>onset density ratio</td>
<td>-</td>
<td>ratio: min($dens_1/dens_2, dens_2/dens_1$), ($\leq 1$)</td>
</tr>
</tbody>
</table>
Vector types, relation functions and segmentation cardinalities

<table>
<thead>
<tr>
<th>Feature vectors</th>
<th>Cardinality</th>
<th>Distance/Similarity Relation measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>set-classes</td>
<td>4</td>
<td>REL</td>
</tr>
<tr>
<td>pitch-class sets</td>
<td>same segmentation</td>
<td>cofrel</td>
</tr>
<tr>
<td>rhythm sets</td>
<td>4</td>
<td>cosine distance</td>
</tr>
<tr>
<td>melodic transition vectors</td>
<td>4</td>
<td>euclidean dist. between transition probability matrices</td>
</tr>
<tr>
<td>note duration distributions</td>
<td>-</td>
<td>euclidean dist. between normalized distributions</td>
</tr>
<tr>
<td>onset density ratio</td>
<td>-</td>
<td>ratio: min($dens_1/dens_2, dens_2/dens_1$), ($\leq 1$)</td>
</tr>
</tbody>
</table>

- We consider only note onsets to produce overlapping segments of set-classes and pitch-class sets.
Vector types, relation functions and segmentation cardinalities

<table>
<thead>
<tr>
<th>Feature vectors</th>
<th>Cardinality</th>
<th>Distance/Similarity Relation measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>set-classes</td>
<td>4</td>
<td>REL</td>
</tr>
<tr>
<td>pitch-class sets</td>
<td>same segmentation</td>
<td>cofrel</td>
</tr>
<tr>
<td>rhythm sets</td>
<td>4</td>
<td>cosine distance</td>
</tr>
<tr>
<td>melodic transition vectors</td>
<td>4</td>
<td>euclidean dist. between transition probability matrices</td>
</tr>
<tr>
<td>note duration distributions</td>
<td>-</td>
<td>euclidean dist. between normalized distributions</td>
</tr>
<tr>
<td>onset density ratio</td>
<td>-</td>
<td>ratio: min(dens$_1$/dens$_2$, dens$_2$/dens$_1$), (≤ 1)</td>
</tr>
</tbody>
</table>

- We consider only note onsets to produce overlapping segments of set-classes and pitch-class sets.
- Overlapping rhythm sets are constructed from the proportions between unique consecutive note onsets.
Vector types, relation functions and segmentation cardinalities

<table>
<thead>
<tr>
<th>Feature vectors</th>
<th>Cardinality</th>
<th>Distance/Similarity Relation measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>set-classes</td>
<td>4</td>
<td>REL</td>
</tr>
<tr>
<td>pitch-class sets</td>
<td>same segmentation</td>
<td>cofrel</td>
</tr>
<tr>
<td>rhythm sets</td>
<td>4</td>
<td>cosine distance</td>
</tr>
<tr>
<td>melodic transition vectors</td>
<td>4</td>
<td>euclidean dist. between transition probability matrices</td>
</tr>
<tr>
<td>note duration distributions</td>
<td>-</td>
<td>euclidean dist. between normalized distributions</td>
</tr>
<tr>
<td>onset density ratio</td>
<td>-</td>
<td>ratio: min(dens1/dens2, dens2/dens1), (≤ 1)</td>
</tr>
</tbody>
</table>

- We consider only note onsets to produce overlapping segments of set-classes and pitch-class sets.
- Overlapping rhythm sets are constructed from the proportions between unique consecutive note onsets.
- Melodic transition vectors are generated from each instrumental part by markov chains.
About Circle-Of-Fifths -relation

- Sample application: Short term 'modulations' based on COF. Note example C.P.E. Bach, Die Neue Litaney.
Analysis: Sibelius 5th Sym. 3 mov.

• Eleven feature vectors connected to the lowest notes in the beginning of bars 105, 165, 213, 221, 242, 371, 407, 421, 427, 445 and 467 were selected as class 1 member vectors:
Analysis: Sibelius 5th Sym. 3 mov.

• Eleven feature vectors connected to the lowest notes in the beginning of bars 105, 165, 213, 221, 242, 371, 407, 421, 427, 445 and 467 were selected as class 1 member vectors:
 - There are remarkable changes in the texture after those bars.
Analysis: Sibelius 5th Sym. 3 mov.

- Eleven feature vectors connected to the lowest notes in the beginning of bars 105, 165, 213, 221, 242, 371, 407, 421, 427, 445 and 467 were selected as class 1 member vectors:
 - There are remarkable changes in the texture after those bars.
- Eleven randomly selected vectors (?) were used as the opposite class members (class 0) in the fuzzy k-nn classifier (where k=5 and the fuzzifier m=2).
Analysis: Sibelius 5th Sym. 3 mov.

- Eleven feature vectors connected to the lowest notes in the beginning of bars 105, 165, 213, 221, 242, 371, 407, 421, 427, 445, and 467 were selected as class 1 member vectors:
 - There are remarkable changes in the texture after those bars.
- Eleven randomly selected vectors (?) were used as the opposite class members (class 0) in the fuzzy k-nn classifier (where k=5 and the fuzzifier m=2).
- The texture-change curve was created by calculating the bar based means of all the training epochs (n=100).
Results
Results

- The texture is nearly constant for about 140 bars.
Results

- The texture is nearly constant for about 140 bars.
- Unlike the other features, the rhythm set approach did not show any significant correlation ($p>>0.05$) with the texture classifier curve.
Results

- The texture is nearly constant for about 140 bars.
- Unlike the other features, the rhythm set approach did not show any significant correlation ($p>>0.05$) with the texture classifier curve.
- We are also studying our intuition, because the texture chance places were chosen by hand.
Future plans

• Go on developing the multidimensional CSA.
• Iterative use of CSA.
• Stand alone application for music analysis.
• Could be used in MIR if audio data is first converted into MIDI or other symbolic form.
References

Thank you!