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Introduction

True Intensity Function (Hidden) Noisy Point Process Data (Observed)

• Doubly-stochastic point processes (Cox processes)

• Used in finance, economics, neuroscience, ecology, etc.



(Desired)

Estimate of Intensity Function

True Intensity Function (Hidden) Noisy Point Process Data (Observed)

Introduction



Prior on Intensity Function

Gaussian Process

Introduction

p(x|θ)



Prior on Intensity Function Conditional Point Process Distribution

Gaussian Process

(e.g. Inhomog. Gamma Interval Proc.)

Introduction

p(x|θ) p(y|x,θ)



Prior on Intensity Function Conditional Point Process Distribution

Gaussian Process

(e.g. Inhomog. Gamma Interval Proc.)

Estimate of Intensity Function

MAP Estimation

p(x|θ) p(y|x,θ)

x* = argmax p(x|y,θ*)

•Cunningham, Yu, Shenoy, Sahani (2008) Inferring neural firing rates from spike trains using Gaussian 

processes. Advances in Neural Information Processing Systems (NIPS) 20.

Introduction

θ* = argmax p(θ|y)

Model Selection
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Problem Statement

• Computationally impractical (infeasible)
– Run-time complexity is O(n3)

– Memory requirement is O(n2)

– n is large (thousands or more)

• How can we solve this problem?
– Large scale optimization techniques

– Problem specific algorithmic manipulations

• Does these methods generalize?
– Optimization and Gaussian Process ‘bag of tricks’



Specific Implementation

• Gaussian Process (GP) prior

– (covariance parameterized by a kernel such as SE)

• Log-concave renewal processes
– (interval primitive, intensity rescaling, discretization)

– Here: Inhomogeneous Gamma Interval Process



Specific Implementation

• Model Selection with a Laplace approximation

• where 

• MAP estimation (to find modal x* at any θ) with a log 
barrier Newton Method



• Computational bottlenecks include:

– MAP estimation

• Objective

• Objective gradients

• Newton steps where

– Model evidence and its gradients (the Laplace approximation)

• We discuss methods to reduce run time and memory 
requirements drastically (without loss of accuracy)

Specific Implementation
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• We must calculate the Newton step (                      ), 
where

• Two costly O(n3) inversions per step and O(n2) memory

• We show that a decomposition                can be found in 
closed form, allowing us to write:

• This prevents costly matrix inversions, making the 
complexity that of solving

• This is quickly done via conjugate gradients and fast 
multiplication methods (linear in    , FFT for     )

Algorithmic Solution (1/3) – MAP Estimation



• Note recursion in Newton’s Method (each iteration step size     ):

• Using the previous form (matrix inv. lemma) of the Hessian (and, as 

such, the Newton step                              ), we write:

• Now neither the objective nor the gradient has any matrix inversions; 

in fact, we get these terms ‘for free’ (only linear operations such as 

inner products) from the Newton step

Algorithmic Solution (2/3) – MAP Estimation



• Evidence (marginal likelihood) approximation

– First two terms of RHS (and gradients) are already calculated

– Consideration required for third term: 

• Recall special structure: we decompose

• There are only m (<<n) meaningful (near axis-aligned) 
eigenvalues, allowing us to approximate O(n3) 
computations with O(m3)  

Algorithmic Solution (3/3) – Model Selection
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• Our algorithmic solution should have: 
– Large run time improvement: O(n3) becomes (roughly) O(nlogn)

– Memory burden eliminated: O(n2) becomes O(n) 

– Effectively no loss in accuracy

• To test these claims, we:
– Pick representative intensity functions over various lengths of time

– Generate point process data from these intensities

– Calculate times and accuracies of the MAP estimations 

– Calculate times and accuracies of the evidence calculations

– Calculate times and accuracies of the full iterative method

• These calculations are done for both the Fast algorithm 

and a Naive method (typical MATLAB/Linux setup)

Results
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• We’ve discussed a very specific problem implementation, but the 
methods are general

• Many GP regression problems have similar structure (e.g. the 
Hessian or the Laplace approximation)

• Large scale optimization ‘bag of tricks’: 
– (Preconditioned) conjugate gradients (PCG)

– Implicit linear operations (avoids matrices in memory)

– Fast matrix multiplication methods (FFT, multipole, etc.) 

– Decomposing matrices with special structure and using matrix inversion 
lemma, Sylvester’s determinant rule, etc.

– Exploiting recursions to avoid unnecessary computation

Generalizing this result



• Orders of magnitude run-time improvement can be found 
by careful problem inspection

• Memory burden can be completely eliminated by avoiding 
explicit matrix representations

• This ‘bag of tricks’ is general and powerful
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