Fast Gaussian Process Methods for
Point Process Intensity Estimation

John P. Cunningham, Maneesh Sahani, Krishna V. Shenoy
Stanford University
Gatsby, University College London

jcunnin@stanford.edu

Outline

Introduction

Problem Statement

Specific Implementation
Algorithmic Solution

Results

Generalizing to other problems
Conclusion

Outline

Introduction

Problem Statement

Specific Implementation
Algorithmic Solution

Results

Generalizing to other problems
Conclusion

Introduction

True Intensity Function (Hidden) Noisy Point Process Data (Observed)

o
(=]
T

» I ORI PO PR E D IR

200 ms

IS
o
T

w
=]
T

Firing Rate (spikes/sec)

n
o
T

o
T

o
oF

0.6 0.8 1
Time (sec)

» Doubly-stochastic point processes (Cox processes)

« Used in finance, economics, neuroscience, ecology, etc.

Introduction

True Intensity Function (Hidden) Noisy Point Process Data (Observed)

@
=]
T

o
(=]
T

» R i e
200 ms

‘ (Desired)

Estimate of Intensity Function

IS
o
T

w
=]
T

Firing Rate (spikes/sec)

o
T

o
oF

0.2 0.4 0.6 0.8 1 1.2 14 186
Time (sec)

60

Firing Rate (spikes/sec)

o

=)
oF

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time (sec)

Introduction

Prior on Intensity Function
p(x|6)

Firing Rate (spikes/sec)

0.6 0.8 1
Time (sec)

Gaussian Process

Introduction

Firing Rate (spikes/sec)

Prior on Intensity Function

P(x|9)

0.6 0.8 1
Time (sec)

Gaussian Process

Conditional Point Process Distribution

p(y|X,0)

» LI TEREMTEEE TR PP 00T e Reer

(e.g. Inhomog. Gamma Interval Proc.)

Introduction

Prior on Intensity Function Conditional Point Process Distribution

P(x|6) p(y[x,0)

» LI TEREMTEEE TR PP 00T e Reer

(e.g. Inhomog. Gamma Interval Proc.)

A

Firing Rate (spikes/sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time (sec)

Estimate of Intensity Function

Model Selection

@
[=]

Gaussian Process

a
=]

* = argmax p(0ly)

n
o

@
S

MAP Estimation

n
=]

Firing Rate (spikes/sec)

x* = argmax p(x|y,0*)

o
=)

0 0 0.2 0.4 0.6 0.8 1 12 1.4 1.6
Time (sec)

«Cunningham, Yu, Shenoy, Sahani (2008) Inferring neural firing rates from spike trains using Gaussian
processes. Advances in Neural Information Processing Systems (NIPS) 20.

Outline

Introduction

Problem Statement

Specific Implementation
Algorithmic Solution

Results

Generalizing to other problems
Conclusion

Problem Statement

« Computationally impractical (infeasible)
— Run-time complexity is O(n3)
— Memory requirement is O(n?)
— n is large (thousands or more)

 How can we solve this problem?
— Large scale optimization techniques
— Problem specific algorithmic manipulations

* Does these methods generalize?
— Optimization and Gaussian Process ‘bag of tricks’

Specific Implementation

« Gaussian Process (GP) prior
p(x [0) =N (u1,%)

— (covariance parameterized by a kernel such as SE)

Y= {K(t:t;)}

here K (#.1.) = o02expd ——(t: — t.)2 25.
iiell.m) where K (#;.1;) _r:rfeij{ Q[ft t;) }4—#?1_.-:‘3;}

° Log-concave renewal Processes
— (interval primitive, intensity rescaling, discretization)
— Here: Inhomogeneous Gamma Interval Process

N o yi—1 v—1 yi—1
ply | x) = H{FE*UB (* Z J';;A) exp{—fj;. Z J‘;:A}}

i=1 k=vy;_1 k=yi_1

Specific Implementation

* Model Selection with a Laplace approximation

h = argmax p(6)p(y |)
7
Ol | 5, Op(x" | 0)— 2T
~ argmax p(f)p(; 0)p(: ' ,
0 A* + 213

e where A* = —Vilogp(y | x.0) |xex-

 MAP estimation (to find modal x* at any 6) with a log
barrier Newton Method

x" = argmax p(x | y) = argmax p(y | x)p(x)
x>0 xz0

Specific Implementation

« Computational bottlenecks include:

— MAP estimation
. Objective f(x) = — logp(y | x,0)p(x | 6)
- Objective gradients g = V. f
. Newtonsteps x,; = —H lg where H=Vif.(x)=%X1+A

— Model evidence and its gradients (the Laplace approximation)

. 1, ., .) 1 .
—log p(y | #) =~ —log p(y | x") + 3(}{ —)T (xF — 1) + Elog I + XA%|

* We discuss methods to reduce run time and memory
requirements drastically (without loss of accuracy)

Outline

Introduction

Problem Statement

Specific Implementation
Algorithmic Solution

Results

Generalizing to other problems
Conclusion

Algorithmic Solution (1/3) — MAP Estimation

« We must calculate the Newton step (x.: = —H ™ 'g),
Whel’e —H_l _ _(Z—l —'—1\)_1

« Two costly O(n3) inversions per step and O(n%) memory

 We show that a decomposition A = RR" can be found in
closed form, allowing us to write:

—H!' = —(zt+n)
= - S+3SR(I+R'SR)'R'S

* This prevents costly matrix inversions, making the
complexity that of solving (I + R"SR)~'v where v = RTXg

« This is quickly done via conjugate gradients and fast
multiplication methods (linear in 7, FFT for £)

Algorithmic Solution (2/3) — MAP Estimation

Note recursion in Newton’s Method (each iteration step size +9)):

(leFl‘.] _Hl) _ F—l +f -._lemL _#1
k—1

— Zf nf T ”)_1“1)

Using the previous form (matrix inv. lemma) of the Hessian (and, as
such, the Newton step x,,; = —H 'g), we write:

Z_l(X“C} —nul) =
Zf_m (_gm __R[JJ(I__R[JJTZRUJ)—lﬁl;JJTZgLJJ)
j=1
Now neither the objective nor the gradient has any matrix inversions;

in fact, we get these terms ‘for free’ (only linear operations such as
iInner products) from the Newton step

Algorithmic Solution (3/3) — Model Selection

Evidence (marginal likelihood) approximation
—log p(yv | #)= —log p(yv | x) + %{x’” —)T (et — 1) + %log I 4+ XA"|

— First two terms of RHS (and gradients) are already calculated
— Consideration required for third term: log | + X A™|

« Recall special structure: we decompose A* = USUL

« There are only m (<<n) meaningful (near axis-aligned)
eigenvalues, allowing us to approximate O(n?)
computations with O(m?3)
log [T + ZA*| = log|I +XUSU’|

= log|[IT+U'SUS]
~ log|I+X 9]

Outline

Introduction

Problem Statement

Specific Implementation
Algorithmic Solution

Results

Generalizing to other problems
Conclusion

Results

* Our algorithmic solution should have:
— Large run time improvement: O(n3) becomes (roughly) O(nlogn)
— Memory burden eliminated: O(n?) becomes O(n)
— Effectively no loss in accuracy

* To test these claims, we:
— Pick representative intensity functions over various lengths of time
— Generate point process data from these intensities
— Calculate times and accuracies of the MAP estimations
— Calculate times and accuracies of the evidence calculations
— Calculate times and accuracies of the full iterative method

* These calculations are done for both the Fast algorithm
and a Naive method (typical MATLAB/Linux setup)

Results

Data Set
1 2 3 4 5 6

Data Size(n) 500 1000 1000 2000 4000 10000
Num. Events (\N)! 20-30 30-40 140-160 55-70 55-70 140-160
MAP Estimation
Fast Solve Time(s) 0.12 0.17 0.46 0.32 7.6 37.9

1 2 fn} 7 A 1 S5 ’ZGE ’_m 2714 IAn:;E
Speed Up 58 232 86 1043 493 x 2000 % *
MS Error (Fast vs. Naive)?2 4.3e-4 42e-4 2.1e-4 5.2e-6 6.1e-6 -

T B 39 6.2 &1 29.9 T9.
Log Determinant Approximation
Fast Solve Time(s) 6.5e-4 1.8e-3 1.9e-2 2.8e-3 2.8e-3 2.5e-2

i AR e bl Bl St it =
Speed Up 375 566 32 2058 x 1.3ed 2.2edx?
Avg, Acc. of Fast Approx. 99.1% 98.8% 99.8% 98.9% 99.7% -

3 = 330 091 Bo. 1 9.9 q0.7
Full GP Intensity Estimation (Iterative Model Selection and MAP Estimation)
Fast Solve Time(s) 44 7.1 30.3 18.7 128 423

jve Solve Time(ql d43 3094 548 2 ded | 525 Limonth3
Speed Up 105 % 451 % 150 % 1512 1166 < ledx?
MS Error (Fast vs. Naive)? 0.10 0.03 10.8 0.01 0.01 -

! Entries show a range of data used.
2 Squared norm of z(t) is roughly 10% to 10°, so these errors are insignificant.
3 Unable to complete naive method; numbers estimated from cubic scaling.

Outline

Introduction

Problem Statement

Specific Implementation
Algorithmic Solution

Results

Generalizing to other problems
Conclusion

Generalizing this result

We've discussed a very specific problem implementation, but the
methods are general

Many GP regression problems have similar structure (e.g. the
Hessian or the Laplace approximation)

H=Vif(x)=2"t+A
—log p(y | #) = —log p(y | x") + é(x —)Tt — 1) + élog I+ XA"

Large scale optimization ‘bag of tricks’:

— (Preconditioned) conjugate gradients (PCG)

— Implicit linear operations (avoids matrices in memory)
— Fast matrix multiplication methods (FFT, multipole, etc.)

— Decomposing matrices with special structure and using matrix inversion
lemma, Sylvester’s determinant rule, etc.

— EXxploiting recursions to avoid unnecessary computation

Conclusion

Orders of magnitude run-time improvement can be found
by careful problem inspection

Memory burden can be completely eliminated by avoiding
explicit matrix representations

This ‘bag of tricks’ is general and powerful

Acknowledgements

— Support

* NIH-NINDS-CRCNS-RO01, Michael Flynn SGF, NSF, Gatsby, CDRF, BWF,
ONR, Sloan, and Whitaker

— Collaborators

« Stephen Boyd (Electrical Engineering, Stanford)
— Staff

 Drew Haven

« Sandy Eisensee

