Introduction

- We want to apply machine learning techniques to semantic web data.
- In this work we focus on the *clustering* of Semantic Web resources – for example for:
 - Visualisation, information-mining, user-recommendations, etc.
Machine Learning from RDF

• Most people learn to enable the semantic web – we assume it already exists and want to learn more from the semantic data

• Representation is king – finding the “correct” mapping of the RDF Graph to the input format for ML is crucial
We test on three different data-sets:

- FOAF Crawl – 3755 persons
- NEPOMUK PIMO – 1809 instances
- Citeseer dump – 4220 papers
Datasets – PIMO

Claudia Stern
Dirk Hagemann
Klaus Nord

files
- Documents
- Papers
- Projects
- CID
- Research

emails
- Inbox
- Todo
- SAP
- CID-proj
- Karlsruhe

contacts
- Claudia Stern
- Dirk Hagemann
- Klaus Nord

new office
Topic
Project
Document
CID slides
Karlsruhe
Where

Who
CID
neu

The Social Semantic Desktop
NEPOMUK
Datasets – Citeseer

citeseer:shannon48 a :article;
 :journal "Bell System Technical Journal";
 :month "July, October";
 :title "A Mathematical Theory of Communication";
 :volume "27";
 :year "1948".
Extracting Instances

- We are interested in *instance based* clustering...
- ... but Semantic Web data is one big graph
- What part of the graph is relevant to a resource?
- Relevant also for UI creation, SPARQL Describe + +
Instance Extraction

Three approaches

• Immediate properties
• Concise Bounded Description
• Depth Limited Crawling
Extracted Instance Graphs
Distance Measure

• Given some RDF “instances” (i.e. resource + relevant graph) how can we compute distances between them?

• Tricky to transform RDF into some N-space for Euclidian distance

• Again three approaches:
 • feature-vector, graph-based & ontological
Feature Vector Distance

- How can we extract a feature vector from an RDF graph?
- Naive solution: make a feature for each property
 - Does not handle deeper relations in graph
- We do slightly better – create features for all paths in the data
 - Limit to top X paths occurring in the data
Feature Vector Example

[name, worksFor, knows,
 worksFor→businessArea,
 worksFor→locatedIn,
 knows→name,
 knows→marriedTo,
 worksFor→locatedIn→locatedIn,
 knows→marriedTo→name]

[{“bob”}, { ex:TheCompany },
 { :node15 }, { business:Telecoms },
 { cities:London }, {“Jane”},
 { :node16 }, { countries:UK },
 {“Roger”}]
Feature Vector Distance

- Distance for features FV and vectors X & $Y:

$$
sim_{FV}(X, Y, FV) = \frac{1}{|FV|} \sum_{f \in FV} \frac{2 \cdot |X_f \cap Y_f|}{|X_f| + |Y_f|}
$$
Graph Based Distance

• Combination of level of overlap of nodes and edges
• Designed for conceptual graphs, but works fine with RDF graphs

Ontological Distance

- Made for formal ontologies, minor modifications needed for noisy semantic web data:
 - Multiple super-classes / types
 - Well defined range/domains
 - Distinction between object/literal properties
- Combination of taxonomy similarity, attribute similarity & relational similarity
- Works directly on RDF graph

Experiments

• We used a very simple HAC algorithm

• Supervised evaluation for Citeseer and PIMO data:
 • F-measure, Heß measures, entropy and purity

• Unsupervised evaluation for FOAF & PIMO:
 • Zamir’s Quality Metric
Results

- Very uneven cluster sizes – all solutions had several singleton clusters
- A more sophisticated clustering algorithm may be in order
- Feature-vector based approach especially bad – largest cluster contained 85% of all instances
Supervised Results

Citeseer

PIMO

F-Measure vs. Model Comparison

- ont
- naive cg
- dlt cg
- cbd cg
- dlt fv
- naive fv
- cbd fv
Supervised Results II

Citepeer

PIMO
Conclusions

• Ultimately “it depends” :)

• On the features of the data-set

• Mainly on the (here non-existent) application!

• Ontological distance measure is quite slow to compute – and does not perform significantly better – but it may for data with better ontologies
Future Work

• Hybrid instance extraction method – combine node-type and depth limit ...

• ... or a frequency based instance extraction method

• Find a specific application!

• Which hopefully could also give us more natural data
Thanks for your attention!

Questions?