1RSB in the ‘small-world’ spin glass

Bastian Wemmenhove, Jon Hatchett, Theodore Nikoletopoulos

January 20, 2005
Introduction and motivation

In what sense small world?
Ising spins interacting through

- Ferromagnetic short range interactions J_0 on a ring
- Frustrated long range interactions J_1 as "shortcuts".
Why bother?

1 Spin glass study with finite connectivity some kind of geometry ("maximal tractable model")
2 RKKY interactions (short range ferro, long range oscillatory)
3 Technical motivations:
 – Extending previous RS work which used replicated transfer matrices
 – The cavity method gives a more intuitive interpretation of replica results
 – RSB exists at least in special cases of the model
 – Conjecture in RS paper on non-reentrance in the phase diagram
 – Possible consequences for message passing algorithms on small world type networks?
Definitions

- Hamiltonian:

 \[H = -J_0 \sum_{i=1}^{N} \sigma_i \sigma_{i+1} - \frac{1}{\langle k \rangle} \sum_{i,j=0}^{N} J_{ij} c_{ij} \sigma_i \sigma_j \]

 where \(\sigma_i \in \{-1, 1\} \) and \(\sigma_{N+1} \equiv \sigma_1 \).

- Random variables:

 \[p(J_{ij}) \rightarrow J_{ij} \]

 \[p(k_i) \rightarrow c_{ij} \in \{0, 1\} \]

 through the constraint \(\sum_{j=1}^{N} c_{ij} = k_i \).

 Furthermore, \(c_{ii} = 0 \), \(\langle k \rangle = \sum_k p(k) k \)

- Goal: obtaining phase diagrams through calculation of observables

 \(m = \frac{1}{N} \sum_i \langle \sigma_i \rangle \) and \(q = \frac{1}{N} \sum_i \langle \sigma_i \rangle \langle \sigma_i \rangle \)
Dealing with the randomness

Objective:

\[f = \lim_{N \to \infty} \frac{1}{\beta N} \left\langle \log Z \right\rangle_{J,k} \]

where

\[Z = \sum_{\sigma} e^{-\beta H(\sigma, \{J_{ij}, \{k_i\})} \]

1 *Replica theory:*

\[f = \lim_{N \to \infty} \lim_{n \to 0} \frac{1}{\beta N} \log \left\langle Z^n \right\rangle_{J,k} \]

Solution (RS) using replicated transfer matrices

2 *Cavity method:* Local iteration equations with random disorder.
The Cavity method on a random graph

- Basic (RS) assumption: All k neighbours of spin σ_0 are only statistically dependent through spin σ_0 (no loop effects).
- In absence of spin σ_0, state of neighbouring spin σ_j (then having $k - 1$ neighbours) is characterized by

$$p(\sigma_j) \sim e^{\beta h_j \sigma_j}$$
• Upon linking spin \(\sigma_0 \) with \(k - 1 \) neighbours, one may define

\[
Z(\sigma_0) = \sum_{\sigma_1, \ldots, \sigma_{k-1}} \exp \left\{ \beta \left[\sigma_0 \sum_{l=1}^{k-1} J_l \sigma_l + \sum_{l=1}^{k-1} h_l \sigma_l \right] \right\}
\]

\[
= \frac{\exp \left\{ \beta \sigma_0 \sum_{l=1}^{k-1} u(J_l, h_l) \right\}}{c(\{J_l\}, \{h_l\})}
\]

with

\[
u(J_l, h_l) = \frac{1}{\beta} \tanh^{-1} [\tanh(\beta J_l) \tanh(\beta h_l)]
\]

• It follows that

\[h_0 = \sum_{l=1}^{k-1} u(J_l, h_l)\]

• The iterative equation of cavity field distributions for fixed connectivity \(k \)

\[
W(h) = \int \prod_{l=1}^{k-1} \left[dJ_l p(J_l) dh_l W(h_l) \right] \delta \left[h - \sum_{l=1}^{k-1} u(J_l, h_l) \right]
\]
Interpretation of h_0 and u_i: they parametrize messages $\mu_{0 \to (0j)}(\sigma_0) \sim e^{\beta h_0 \sigma_0}$, $\mu_{(i0) \to 0}(\sigma_0) \sim e^{\beta u_i \sigma_0}$. Consequently, $W(h)$ parametrizes the distribution of messages over the whole graph, i.e., describing statistics of belief propagation over random instances of graphs.

- $W(h)$ is the main order parameter of the RS theory, from which all macroscopic observables follow.
Cavity method for the ‘small-world’ lattice

- Two types of cavity spins, either missing a long-range (τ-spin), or a short-range bond (σ-spin).
- Two types of cavity fields, h (coupling to τ-spin) and x (coupling to σ-spin).

Two types of iterations: Adding to the graph σ_0 (left) or τ_0 (right).
\[x_0 = u(J_0, x_1) + \sum_{l=1}^{k} u(J_l, h_l) \]

\[h_0 = u(J_0, x_1) + u(J_0, x_2) + \sum_{l=1}^{k-1} u(J_l, h_l) \]

- Coupled distribution iterations

\[\Phi(x) = \int \, dx' \Phi(x') \prod_{l=1}^{k} [dJ_l p(J_l) dh_l W(h_l)] \]

\[\times \delta[x - u(J_0, x') - \sum_{l=1}^{k} u(J_l, h_l)] \]

\[W(h) = \int \, dx \, dx' \Phi(x) \Phi(x') \prod_{l=1}^{k-1} [dJ_l p(J_l) dh_l W(h_l)] \]

\[\times \delta[h - u(J_0, x) - u(J_0, x') - \sum_{l=1}^{k-1} u(J_l, h_l)] \]
• ‘Real effective field’ distribution:

\[R(H) = \int dx dx' \Phi(x) \Phi(x') \prod_{l=1}^{k} [dJ_l p(J_l) dh_l W(h_l)] \times \delta[H - u(J_0, x) - u(J_0, x') - \sum_{l=1}^{k} u(J_l, h_l)] \]

• Observables:

\[m = \int dH R(H) \tanh(\beta H) \]

\[q = \int dH R(H) \tanh^2(\beta H) \]

• Other observables are found by defining appropriate graph operations from which they are derived.

• Resulting equations equivalent to replicated transfer matrix results
Bifurcation conditions and RS phase diagrams

- Bifurcation conditions for the first moments of $W(h)$ determine second order phase transitions from paramagnetic phase:

 Paramagnetic ($m = 0, q = 0$) to Ferromagnetic ($m \neq 0, q \neq 0$):

 \[
 \Bigg[\langle k \rangle (e^{2\beta J_0} - 1) + \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} \Bigg] \langle \tanh \left(\frac{\beta J}{\langle k \rangle} \right) \rangle_J = 1
 \]

 Paramagnetic to Spin Glass ($m = 0, q \neq 0$):

 \[
 \Bigg[2\langle k \rangle \sinh^2(\beta J_0) + \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} \Bigg] \langle \tanh^2 \left(\frac{\beta J}{\langle k \rangle} \right) \rangle_J = 1
 \]
One step RSB

- RS assumption: cavity fields characterize global minimum of free energy before and after graph iteration with corresponding free energy shift ΔF.
- 1RSB (Mezard & Parisi) Several local minima are considered characterized by h^α (α labels pure state). Corresponding free energy shifts ΔF^α reshuffle order in F^α.
- Different pure states $\alpha \in \{1, \ldots, M\}$

$$W^\alpha = \frac{\exp(-\beta F^\alpha)}{\sum_{\gamma} \exp(-\beta F^\gamma)}$$

- Basic self-consistent ansatz

$$\rho(F) = \exp(\beta \mu (F - F^{\text{ref}}))$$

- Order parameter functions site-dependent and factorize over pure states at each
\begin{equation}
P(h) = \frac{1}{N} \sum_i \prod_{\alpha=1}^{\mathcal{M}} P_i(h^\alpha)
\end{equation}

\begin{equation}
Q(x) = \frac{1}{N} \sum_i \prod_{\alpha=1}^{\mathcal{M}} Q_i(x^\alpha)
\end{equation}

- Advanced population dynamics algorithm, involving N populations of \mathcal{M} fields.
- All observables are evaluated at value of μ for which

\[
\frac{\partial f}{\partial \mu} = 0
\]

Equations are recovered exactly within replica theory using a one step RSB ansatz a la Monasson.
Numerical results

\[p(k) = \delta_{k,6}, \]

\[p(J) = \frac{5}{8}\delta(J - 1) + \frac{3}{8}(J + 1) \]
RS:
\[f = -0.3561 \]
\[q = 0.5789 \]

1RSB:
\[\mathcal{N} = 2000 \text{ and } \mathcal{M} = 1000 \]
\[\mu = 0.32 \pm 0.01. \]
\[f = -0.3557 \pm 0.0001 \]
\[q_0 = 0.397 \pm 0.003 \]
\[q_1 = 0.673 \pm 0.003 \]
\[m = 0.2 \pm 0.05 \]
Simulations

Unfortunately: large finite size effects, long equilibration times. Bad statistics. However: nonzero magnetization.
Conclusions and outlook

- Small world type graph can be studied with the cavity method, giving the same results as the replica method.
- RSB occurs in various regions of the phase diagram, and can be detected within this framework.
- Extension to next-nearest neighbour interactions possible, though numerically expensive.