Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search

Navin Goyal (Georgia Tech)
Yury Lifshits (Caltech)
Hinrich Schütze (Stuttgart University)

Web Search and Data Mining 2008
Stanford, February 11, 2008
Nearest Neighbors: an Example

Input: Set of objects

Task: Preprocess it
Nearest Neighbors: an Example

Input: Set of objects

Task: Preprocess it

Query: New object

Task: Find the most similar one in the dataset
Nearest Neighbors: an Example

Input: Set of objects
Task: Preprocess it

Query: New object
Task: Find the most similar one in the dataset
Nearest Neighbors

From computational perspective almost all algorithmic problems in the Web represent some form of nearest neighbor problem:

Search space: object domain \mathbb{U}, similarity function σ

Input: database $S = \{ p_1, \ldots, p_n \} \subseteq \mathbb{U}$

Query: $q \in \mathbb{U}$

Task: find $\text{argmax} \, \sigma(p_i, q)$
Contribution

- Combinatorial framework: new approach to data mining problems that does not require triangle inequality
- New algorithms for nearest neighbor search
- Experiments
- Tutorial, website
Outline

1. Motivation
2. Combinatorial Framework
3. New Algorithms
4. Directions for Further Research
Motivation
Similarity Search for the Web

- Recommendations
- Personalized news aggregation
- Ad targeting
- “Best match” search
 Resume, job, BF/GF, car, apartment
- Co-occurrence similarity
 Suggesting new search terms
Nearest Neighbors: Prior Work

Sphere Rectangle Tree Orchard’s Algorithm k-d-B tree
Geometric near-neighbor access tree Excluded
middle vantage point forest .mvp-tree Fixed-height
fixed-queries tree AESA Vantage-point
tree LAESA R*-tree Burkhard-Keller tree BBD tree
Navigating Nets Voronoi tree Balanced aspect ratio
tree Metric tree vp*-tree M-tree
Locality-Sensitive Hashing SS-tree
R-tree Spatial approximation tree
Multi-vantage point tree Bisector tree mb-tree Cover
tree Hybrid tree Generalized hyperplane tree Slim tree
Spill Tree Fixed queries tree X-tree k-d tree Balltree
Quadtrees Octree Post-office tree
Challenge: Separation Effect

In theory:
Triangle inequality
Doubling dimension is $o(\log n)$
Challenge: Separation Effect

In theory:
Triangle inequality
Doubling dimension is $o(\log n)$

Typical web dataset has separation effect
For almost all $i, j : 1/2 \leq d(p_i, p_j) \leq 1$
Challenge: Separation Effect

In theory:
Triangle inequality
Doubling dimension is \(o(\log n) \)

Typical web dataset has separation effect

For almost all \(i, j \):
\[
\frac{1}{2} \leq d(p_i, p_j) \leq 1
\]

Classic methods fail:
In general metric space exact problem is intractable
Branch and bound algorithms visit every object
Doubling dimension is at least \(\log n/2 \)
Combinatorial Framework
Comparison Oracle

- Dataset p_1, \ldots, p_n
- Objects and distance (or similarity) function are NOT given
- Instead, there is a comparison oracle answering queries of the form:

 Who is closer to A: B or C?
Disorder Inequality

Sort all objects by their similarity to \(p \):

\[\text{rank}_p(r) \]

\[\text{rank}_p(s) \]
Disorder Inequality

Sort all objects by their similarity to p:

Then by similarity to r:
Disorder Inequality

Sort all objects by their similarity to p:

Then by similarity to r:

Dataset has disorder D if

$$\forall p, r, s : \ rank_r(s) \leq D(rank_p(r) + rank_p(s))$$
Combinatorial Framework

\[
= \text{Comparison oracle}
\]

Who is closer to A: B or C?

+

\[
\text{Disorder inequality}
\]

\[
\text{rank}_r(s) \leq D(\text{rank}_p(r) + \text{rank}_p(s))
\]
Combinatorial Framework: FAQ

- Disorder of a metric space? Disorder of \mathbb{R}^k?
- In what cases disorder is relatively small?
- Experimental values of D for some practical datasets?
- Disorder constant vs. other concepts of intrinsic dimension?
Advantages:

- Does not require triangle inequality for distances
- Applicable to any data model and any similarity function
- Require only comparative training information
- Sensitive to “local density” of a dataset
Advantages:

- Does not require triangle inequality for distances
- Applicable to any data model and any similarity function
- Require only comparative training information
- Sensitive to “local density” of a dataset

Limitation: worst-case form of disorder inequality
Disorder vs. Others

- If expansion rate is c, disorder constant is at most c^2
- Doubling dimension and disorder dimension are incomparable
- Disorder inequality implies combinatorial form of “doubling effect”
3

New Algorithms
Ranwalk Informally (1/2)
Hierarchical greedy navigation:

1. Start at random city p_1
Hierarchical greedy navigation:

1. Start at random city p_1
2. Among all airlines choose the one going most closely to q, move there (say, to p_2)
Hierarchical greedy navigation:

1. Start at random city p_1
2. Among all airlines choose the one going most closely to q, move there (say, to p_2)
3. Among all railway routes from p_2 choose the one going most closely to q, move there (p_3)
Hierarchical greedy navigation:

1. Start at random city p_1

2. Among all airlines choose the one going most closely to q, move there (say, to p_2)

3. Among all railway routes from p_2 choose the one going most closely to q, move there (p_3)

4. Among all bus routes from p_3 choose the one going most closely to q, move there (p_4)
Hierarchical greedy navigation:

1. Start at random city \(p_1 \)
2. Among all airlines choose the one going most closely to \(q \), move there (say, to \(p_2 \))
3. Among all railway routes from \(p_2 \) choose the one going most closely to \(q \), move there (\(p_3 \))
4. Among all bus routes from \(p_3 \) choose the one going most closely to \(q \), move there (\(p_4 \))
5. Repeat this \(\log n \) times and return the final city
Hierarchical greedy navigation:

1. Start at random city p_1
2. Among all airlines choose the one going most closely to q, move there (say, to p_2)
3. Among all railway routes from p_2 choose the one going most closely to q, move there (p_3)
4. Among all bus routes from p_3 choose the one going most closely to q, move there (p_4)
5. Repeat this $\log n$ times and return the final city

Transport system: for level k choose c random arcs to $\frac{n}{2^k}$ neighborhood
Ranwalk Algorithm

Preprocessing:
- For every point \(p \) in database we sort all other points by their similarity to \(p \)

Data structure: \(n \) lists of \(n - 1 \) points each.

Query processing:
1. Step 0: choose a random point \(p_0 \) in the database.
2. From \(k = 1 \) to \(k = \log n \) do Step \(k \): Choose \(D' := 3D(\log \log n + 1) \) random points from \(\min(n, \frac{3Dn}{2^k}) \)-neighborhood of \(p_{k-1} \). Compute similarities of these points w.r.t. \(q \) and set \(p_k \) to be the most similar one.
3. If \(\text{rank}_{p_{\log n}}(q) > D \) go to step 0, otherwise search the whole \(D^2 \)-neighborhood of \(p_{\log n} \) and return the point most similar to \(q \) as the final answer.
Analysis of Ranwalk

Assume that database points together with query point $S \cup \{q\}$ satisfy disorder inequality with constant D:

$$\text{rank}_x(y) \leq D(\text{rank}_z(x) + \text{rank}_z(y)).$$

Then Ranwalk algorithm always answers nearest neighbor queries correctly.

Resources:

- Preprocessing space: $\mathcal{O}(n^2)$
- Preprocessing time: $\mathcal{O}(n^2 \log n)$
- Expected query time: $\mathcal{O}(D \log n \log \log n + D^2)$
Variation: Arwalk

Arwalk: moving all random choices to preprocessing

Assume that database points together with query point $S \cup \{q\}$ satisfy disorder inequality with constant D

Then for any probability of error δ Arwalk algorithm answers nearest neighbor query within the following constraints:

- Preprocessing space: $\mathcal{O}(nD \log n (\log \log n + \log 1/\delta))$
- Preprocessing time: $\mathcal{O}(n^2 \log n)$
- Query time: $\mathcal{O}(D \log n (\log \log n + \log 1/\delta))$
Experiment

Reuters-RCV1 corpus:

1. Fix range R
2. Choose random $a, b \in [1..R]$
3. Choose random $p \in S$
4. Take r s.t. $\text{rank}_p(r) = a$
5. Take s s.t. $\text{rank}_r(s) = b$
6. Let $c = \text{rank}_p(s)$
7. Return $\frac{c}{a+b}$
3
Directions for Further Research
Recent Results

Yury Lifshits and Shengyu Zhang
Similarity Search via Combinatorial Nets

- Better nearest neighbors:
 - Deterministic
 - Preprocessing $\text{poly}(D)n \log^2 n$ time
 - Price: search time increases to $D^4 \log n$

- Combinatorial algorithms for other problems:
 - Near duplicates
 - Navigation in a small world
 - Clustering
Future of Combinatorial Framework

- Other problems in combinatorial framework:
 - Low-distortion embeddings
 - Closest pairs
 - Community discovery
 - Linear arrangement
 - Distance labelling
 - Dimensionality reduction

- What if disorder inequality has exceptions, but holds in average?
- Insertions, deletions, changing metric
- Metric regularizations
- Experiments & implementation
Yury Lifshits and Shengyu Zhang
Similarity Search via Combinatorial Nets

Navin Goyal, Yury Lifshits, Hinrich Schütze
Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search

Benjamin Hoffmann, Yury Lifshits, Dirk Novotka
Maximal Intersection Queries in Randomized Graph Models
Summary

- Combinatorial framework: comparison oracle + disorder inequality
- New algorithms: Random walk with nearly $D \log n$ steps
- Further work: Implementing combinatorial algorithms Disorder in average
Summary

- **Combinatorial framework:**
 comparison oracle + disorder inequality

- **New algorithms:**
 Random walk with nearly $D \log n$ steps

- **Further work:**
 Implementing combinatorial algorithms
 Disorder in average

Thanks for your attention!

Questions?